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Abstract: In this paper, a novel measure of the population diversity of a Genetic Algorithm (GA) is presented. 
Chromosomes diversity plays a major role for the successfully operation of a GA, since it describes the 
number of the different candidate solutions that the algorithm evaluates, in order to find the optimal one, in 
respect to a performance index, called objective function. In a well defined algorithm, the diversity of the 
current population should be measurable, in order to estimate the performance of the algorithm. The resulted 
observation, that is, the measuring of the diversity, can then be used to real-time adjust the factors that 
determine the chromosomes variety (Pc, Pm), during the execution of the GA.  It is shown, that a simple 
chromosomes clustering into the search space, by using the well known k-means algorithm, can give a 
useful picture of the population’s distribution. Thus, by translating the problem of finding the best solution 
to a GA-based problem into an iterative clustering process, and by using the scatter matrices (Sw, Sb), which 
describe completely the candidate’s solutions topology, one could define a novel formula that gives the 
population diversity of the algorithm. 

1 INTRODUCTION 

Evolutionary Algorithms (EAs) have been used in 
many applications through the years, due to its 
stochastic mechanism for finding solutions that 
optimize single or multiple objective problems. 
Genetic Algorithms (Holland, 2001, Mitchell, 2002) 
are considered the most popular kind of EAs since 
they are characterized by a high degree of parallism 
and natural behaviour.   

Genetic Algorithms (GAs) are used as 
optimization methods to solve difficult and complex 
problems in a range of scientific fields, such as 
image processing (Mirmehdi, 1997, Papakostas, 
2003), robust control (Jamshidi, 2003, Papakostas, 
2004), pattern classification (Bandyopadhyay, 1995) 
etc. Their popularity can be justified by their ability 
to overcome possible local optima, and to converge 

to the global solution of a problem, with high 
probability.  

However, there are some cases in which the 
global optimum is quite far from the derived 
solution that the algorithm converged to. This 
undesirable situation is called premature 
convergence (Mitchell, 2002). When this 
phenomenon appears, the population chromosomes 
are all the same. In other words, the population 
diversity has been lost. Of course, the diversity 
would be also lost in the case of the algorithm 
converging to the global optimum. The ill-posed 
situation is when the diversity decreases quickly and 
stays to low level for many generations. 

Therefore, in order to prevent this situation, it is 
needed to measure the diversity variation through 
the generations, and adjust the algorithm parameters 
off-line, in the initial calibration or online during the 
execution of the algorithm. 
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In the present paper, a clustering method for 
exploring the distribution of the chromosomes and 
the scatter matrices, Sb – between class scatter 
matrix and Sw – within class scatter matrix of the 
resulted clusters for measuring the level of the 
current diversity, are being used. 

The paper is organized as follows: the proposed 
method is described in section 2, by analyzing the k-
means algorithm and the way it is used for this paper 
purpose, while the effectiveness of the method is 
examined through appropriate simulations in the 
third section. Finally, conclusions that may derive 
from the previous discussion are highlighted in the 
last section. 

2 THE PROPOSED METHOD 

The main idea of the proposed method, for 
measuring the population diversity of a GA, is based 
on viewing the process to find the optimal solution 
of a problem, as a clustering one. Let us consider the 
algorithm’s chromosomes for an n-dimensional 
problem  
 

)...(...,),...( 321
11

3
1
2

1
11

m
n

mmm
mn xxxxChxxxxCh  

 
where Chi is the ith chromosome, and i

jx  is the jth 
variable of the ith chromosome. In the above 
formulation, the population size is equal to m. 

These chromosomes can be considered as n-
dimensional vectors with coordinates (x1,x2,…,xn), 
and thus can be considered as single points into the 
n-dimensional variable space (search space). To 
visualize these points in the search space, one can 
produce the scatter plot of them, as depicted in the 
following figure, where the points correspond to the 
initial population in the case of a 2-D problem. 

 
Figure 1: 2-D scatter plot of the initial algorithm’s 
population 

Assuming that the above figure represents the 
location of the initial population of the algorithm, 

during the operation of the GA all the chromosomes 
tend to converge to the same point of the search 
space. As the algorithm converges to an optimum 
(global or local), the form of the scatter plot will be 
similar to the one of Figure 2. 

 
Figure 2: 2-D scatter plot of the final algorithm’s 
population 
 

As can be seen in Figure 2, the diversity of the 
final population has significantly decreased over the 
generations, since there are only three different 
chromosomes. If the solution given by the algorithm 
is the global optimum, then the diversity reduction is 
acceptable. However, in most of the cases where the 
problem to be solved is quite complex, the global 
optimum is unknown. It is therefore desirable to 
keep the diversity in high levels during the 
optimization procedure, in order to explore the 
search space as much as possible. Such a strategy 
can guarantee the suitability of the current solution, 
by high probability. 

In the current work, a clustering method is 
applied, in order to investigate the location of the 
entire population inside the variable space, and the 
diversity of the population is measured by means of 
the scatter matrices of the resulted chromosome 
clusters. 

In the next section a brief description of the k-
means clustering algorithm, is taking place, while 
the proposed diversity measure is defined, later. 

2.1 k-means Algorithm 

Clustering methods have many applications in the 
engineering science, where data analysis is involved. 
In the following, a short definition, of what 
clustering stands for, is presented. 
 
Definition 1. Clustering of a given data set, in N-
dimensional space, is the process that partitions 
these data into a number of groups (clusters) by 
means of a similarity or dissimilarity metric 
(Fukunaga, 1990). 
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One of the most used clustering algorithms is the 

k-means one (Looney, 1997), which can be 
described in the following steps: 
 
Step 1:  Choose K initial cluster centers, C1, C2… Ck. 
Step 2: Classify each point of the data set to a cluster 
according to the following statement: point x 
belongs to cluster ith with center Ci, if 
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Step 3: Compute the new cluster centers according 
to  
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where Ni is the number of points belong to the ith 
cluster. 
 
Step 4: If Ci(t+1)=Ci(t), for i=1,2,..,K, then 
algorithm is terminated, otherwise goes to step 2. 
 

It must be noted, that the initialization of the 
cluster centers, play major role to the performance 
and the fast convergent of the algorithm. 

In the proposed method, the k-means algorithm 
is applied in each generation to cluster the 
population chromosomes. In our approach, two 
essential assumptions about this algorithm have been 
made: 
 
Assumption 1: The initial number K of the cluster 
centers are chosen to be equal to the population 
size.  
 
Assumption 2:  In each iteration of the k-means 
algorithm, the empty clusters are being discarded. 
 

Assumption 1 is being justified by Remark 1 of 
the next section, while assumption 2 is made to 
prevent the increasing of the clusters number, by 
keeping the empty ones, which stay empty until the 
end of the algorithm. 

2.2 Diversity Measure 

Once the clustering is applied on each generation of 
the GA, a number of clusters are obtained. The 
number and the relative location of these clusters 
can be used to measure the diversity of the 
algorithm.  

A high diversity is presented by a population 
which covers the search space as much as possible, 

while the low diversity is presented by a population 
with all chromosomes being the same. These main 
concepts can be declared by Remark 1 and 2 
respectively, in terms of clustering. 
 
Remark 1: The highest diversity appears when each 
chromosome constitutes the center of a cluster with 
one member, the chromosome itself and they are 
equally spaced, with maximum permit able distance 
over the search space (Figure 3). 
 
Remark 2: The lowest diversity appears when all 
the chromosomes of the population are the same. 
This means that there is one cluster with all the 
chromosomes being the center (Figure 4).  

 
Figure 3: 2-D Maximum Diversity, by optimal 
chromosomes arrangement  
 

 
Figure 4: 2-D Minimum Diversity 

 
The above figures correspond to the extreme 

situations a GA can be found. In practice, the 
algorithm, never presents the diversity illustrated in 
Figure 3, but it begins with a random chromosomes 
arrangement (Figure 1) and it decreases its diversity 
generation by generation. When, the algorithm 
terminates, its diversity looks like this of Figure 2, or 
this of Figure 4 for full convergence. 

To measure these variations of the chromosomes 
diversity, the scatter matrices Sw and Sb (Fukunaga, 
1990), are used, when the clustering has finished. 
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Between clusters scatter matrix Sb , describes 
how the data clusters, obtained by clustering, are 
distributed along the search space, and can be 
calculated by using the following equation 
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where K is the number of clusters obtained from k-
means algorithm, mi is the mean value of the 
chromosomes belong to cluster i, and m the mean 
value of the entire population. 

Within clusters scatter matrix, Sw, measures the 
distribution of the chromosomes inside the clusters 
that they belong, and is described by the equation 
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where Nj is the number of chromosomes belonging 
to the cluster i and Chj the jth chromosome. The 
remaining symbols are the same as in Sb. 

In the previous equations the quantities are 
vectors in nℜ , according to the problem’s 
dimensionality. 

Keeping in mind the above definitions of the 
scatter matrices, Remark 1 and 2, can be restated as 
Remark 3 and 4, below 
 
Remark 3:  High diversity occurs when the between 
clusters scatter matrix Sb, takes its optimal value for 
a number of clusters equal to the population size, 
and simultaneously the within clusters scatter matrix 
Sw, is zero. 
 
Remark 4: Low diversity occurs when the between 
clusters scatter matrix Sb, is zero meaning that the 
number of clusters is equal to one, and 
simultaneously the within clusters scatter matrix Sw, 
is zero.  
 
Remark 5 is a direct consequent of the above 
remarks: 
 
Remark 5: All the intermediate cases are 
characterized by random values of Sb, Sw and 
number of clusters.  
 
In order to represent the situations described by 
Remark 1 and 2, by a measurable quantity, the 
following measure diversity is introduced. 
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where Ncl is the number of clusters obtained by the 
clustering algorithm and tr() the trace of the matrix . 

This measure takes high values as Ncl and tr(Sb) 
increases, while tr(Sw) decreases, thus the Remark 3 
is satisfied. 

The minimum value of this measure appears in 
the case presented in Figure 4, and is equal to zero, 
since Sb=0, and Sw=0. 

The above measure has been applied to explore 
the diversity of the population, which is being used 
to optimize a benchmark function, over the 
generations. 

The simulations being presented in the next 
section, establish the novel diversity measure, a 
significant measure to investigate and visualize the 
variety of the algorithm population. 

3 SIMULATION RESULTS 

The experimental results presented here, justify the 
usefulness of the proposed diversity measure, in 
supervising the progress of a GA. 

The previous figures are generated by the 
optimization of a known benchmark function, the 
Griewangk’s function (Digalakis2000). This 
function has the following form for two variables 
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 Griewangk’s function is multimodal, but the 

location of the minima are regularly distributed, as 
illustrated in Figure 5, 

 

Figure 5: Griewangk’s function for 2 dimensions 
 

The algorithm used for these experiments is 
configured according to the following Table 1. 
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Table 1: GA Parameters 
Population 
Size 

100 Crossover 
Probability (Pc) 

0.8 

Selection 
Method 

SUS Mutation 
Probability (Pm) 

0.01 

Generations 100 
 

The simulations are based on the observations of 
the minimization process of the above function, 
using a simple real-valued GA. During the 
execution, the population diversity in each 
generation is measured by using, the previously 
introduced formula. 

Let us investigate the progress of the GA, in 
optimizing the Griewangk’s function. The algorithm 
starts with a random population and diversity 
measure, as depicted in Figure 6. 

 

 
Figure 6: Initial population with Diversity = 607.0518 

 
As the above figure shows, the cluster centers 

(dots) and the chromosomes (plus signs) cover a 
large area of the search space, and thus they provide 
high diversity measure.  

In Figure 7, the scatter plot of the 30th 
generation’s population is presented. 

 

 
Figure 7: 30th generation’s population Diversity = 70.1862 
 

It is obvious from the above Figures 6-7, that the 
diversity of the population has been lost, after 30 

generations. If the minimum has been reached, the 
goal has been achieved. In the specific case, the 
minimum after 30 generations is 0.5115, quite far 
from the global minimum, which is 0.  

Thus, the measured diversity can be useful in 
changing the crossover and mutation probabilities, in 
order to converge to the global minimum. 

Figure 8, shows the variation of the diversity 
through the generations 

 
Figure 8: Diversity variation of the algorithm (Pm=0.01) 

 
For the rest of the generations, the diversity is 

varied in low levels, decreasing the probability to 
find the global optimum. If the diversity stays in 
high levels this probability is increased.  

Therefore, the diversity measure proposed in this 
paper seems to have the ability to describe the 
evolution of the algorithm’s population. 

It is very interesting to investigate, the behaviour 
of the algorithm in terms of the diversity, by 
changing the crossover and mutation probabilities Pc 
and Pm, respectively. 

Figure 9, presents the diversity variation, for 
Pm=0.1. 

 
Figure 9: Diversity variation of the algorithm (Pm=0.1) 

 
Mutation probability (Pm) controls the 

appearance of the search space points that might 
have not been presented before. In other words, it 
manages to generate all the possible search space 
points, by some probability. Thus, it tries to keep the 
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diversity in high levels, a fact that is proved by the 
form of the diversity variation of Figure 9. As, can 
be seen from this figure, the diversity fluctuates 
between 100 and 200, while in the case of Pm=0.01, 
it varies between 5 and 50. 

On the other hand, crossover probability (Pc), 
defines the probability by which the chromosomes 
interchange their information, in order to produce 
better individuals. This probability is changed to 0.5, 
in the initial algorithm and the measured diversity is 
drawing in Figure 10. 

 
Figure 10: Diversity variation of the algorithm (Pc=0.5) 

 
Crossover probability determines the population 

diversity, by a high degree, as displayed in Figure 
10, since a reduction of the crossover probability has 
led to premature convergence.  

It must be noted that, each one of these 
experiments is executed for 100 times, and the mean 
diversity has been presented in the above figures. 
Additionally, Figures 9 and 10 have been obtained 
by applying only one of the operators (crossover, 
mutation) each time, during the algorithm execution.  

These simulations demonstrates, that the 
behaviour of the GA and the impact the crossover 
and mutation probabilities have, can be represented 
by the diversity measure introduced in this paper. 

4 CONCLUSIONS 

An innovative formula, which measures the diversity 
of GA’s population, has been introduced in the 
previous sections. The diversity measure is based on 
the statistical quantities that describe the 
chromosome clusters obtained by applying the k-
means algorithm to the chromosomes population.  

The resulted measurement can be used to 
calibrate the GA by choosing the appropriate 
crossover Pc and mutation Pm probabilities. 
Additionally this measurement will be useful in 
adjusting the probabilities on-line during the 

execution of the algorithm, in order to keep the 
diversity in high levels. 

Appropriate experiments have shown that the 
proposed measure describes the evolution of the 
algorithm’s population. This measure can also be 
used to any population-based algorithm, since it uses 
the statistical properties of the population’s 
distribution over the search space. 

Future work must be carried out in order to use 
this measure to adaptively adjust the crossover and 
mutation probabilities. Additional experiments with 
more complex optimization problems such as Neural 
Networks training by using GAs must be done. The 
training phase of a Neural Network is a process that 
is quite blind, because the only measure that one 
may have is the approximation error, and due to the 
high dimensionality the investigation of the weights 
evolution is not possible. 

REFERENCES 

Bandyopadhyay, S., Murthy, C.A., Pal, S.K., 1995, 
Pattern Classification with Genetic Algorithms, 
Pattern Recognition Letters, (16), pp. 801-808. 

Digalakis, J.G., Margaritis, K.G., 2000, On Benchmarking 
Functions for Genetic Algorithms, Int. Journal 
Computer Math., Vol.00, pp. 1-27. 

Fukunaga, K., 1990, Introduction to Statistical Pattern 
Recognition, 2nd edition, Academic Press. 

Holland, J.H., 2001, Adaptation in Natural and Artificial 
Systems, 6th edition, MIT Press. 

Jamshidi, M., Coelho, L.S., Krohling, R.A., Fleming, P.J., 
2003. Robust Control Systems with Genetic 
Algorithms, CRC Press. 

Looney, C.G., 1997, Pattern Recognition using Neural 
Networks, Theory and Algorithms for Engineers and 
Scientists, Oxford University Press. 

Mirmehdi, M., Palmer, P.L., Kittler, J.,1997, Genetic 
Optimisation of the Image Feature Extraction Process, 
Pattern Recognition Letters (18), pp. 355-365.  

Mitchell, M., 2002, An Introduction to Genetic 
Algorithms, 8th edition, MIT Press.  

Papakostas, G.A., Kosmidou, O.I., Antonakis, I.E., 2004, 
An LMI-Based Genetic Algorithm For Guaranteed 
Cost Control, 1st International Conference on 
Informatics in Control, Automation and Robotics 
(ICINCO’04), Setubal, Portugal 

Papakostas, G.A., Boutalis Y.S., Mertzios B.G., 2003, 
Evolutionary Selection of Zernike Moment Sets in 
Image Processing, 10th International Workshop on 
Systems, Signals and Image Processing (IWSSIP’03), 
Prague, Czech Republic.  

AN EXPLORATION MEASURE OF THE DIVERSITY VARIATION IN GENETIC ALGORITHMS

265


