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Abstract: In this paper, a wavelet-based technique is applied to three moment feature vectors corresponding to three 
different families of orthogonal moments. The resulted compressed vectors are studied experimentally, in 
order to extract useful information about their behaviour to a reconstruction procedure. The reconstruction 
performance of these moments is identical to the amount of image information that they contain to certain 
moment orders. Since the moment vectors are imposed to compression at the high frequency components, a 
conclusion about their information redundancy can be also determined. The most efficient moment family, 
by means of the reconstruction error, will form feature vectors with low dimension, yet with high 
information content and thus will be very useful for pattern recognition applications, guarantying high 
recognition rates.  

1 INTRODUCTION 

Image moments have played a major role in vision 
systems, since their first introduction by Hu (Hu, 
1962).  They have been used as image descriptors, 
able to characterize an image uniquely. The 
uniqueness property unfortunately is satisfied only 
by the orthogonal moments, which derived from 
orthogonal polynomials consisting an orthonormal 
basis. This feature makes them more useful than the 
conventional ones, since they guarantee a small 
information redundancy and high reconstruction 
capabilities. 

  In general an infinite number of moments can 
describe the whole image, but in practical 
applications a finite number of them is mostly 
needed. Thus, there is a need to use the appropriate 
moment feature vector that encloses as much as 
possible image information. By applying a 
compression method to the moment feature vector, 

this requirement is satisfied (Papakostas, 2002, 
2004).  

In this paper, an investigation about the 
reconstruction performance of three popular families 
of orthogonal moments, which have been processed 
by using the above procedure, is attempted. The 
present study is focused on the reconstruction 
capability of the three compressed moment vectors; 
in order to decide which orthogonal moment family 
behaves appropriately, by means of the image 
reconstruction error. 

The most efficient moment family, which will be 
obtained, can be used in any pattern recognition 
task, as a discriminative feature vector, as it has 
already been presented in (Papakostas, 2004). 

The following sections, are introducing the 
Zernike moments (ZMs), Pseudo-Zernike moments 
(PZMs) and Fourier-Mellin orthogonal moments 
(OFMMs), and the processing algorithm that these 
moments will be imposed to. Finally, in the last 
section, an experimental study is taking place in 
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order to justify the performance of each orthogonal 
moment family, in reconstructing an image by using 
as small as possible moment features.  

2 ORTHOGONAL MOMENTS 

Orthogonal moments have been proved a major 
image descriptor, as feature vectors, in many pattern 
recognition tasks. Their ability to describe an image 
fully, with minimum information redundancy, due to 
their orthogonality property, as well as their 
robustness in noisy environments, have established 
them as the most efficient among the moment 
descriptors.  

The present paper, investigates the 
reconstruction performance, of the three most 
powerful orthogonal moments the Zernike, Pseudo-
Zernike and Fourier-Mellin moments, that have been 
affected by a wavelet based compression method. 

Their performance is being compared to that of 
the uncompressed moments of the same family. 
Also, by comparing the performance of these 
families, a conclusion about the most efficient, in the 
sense of their reconstruction error, is being derived.  

2.1 Zernike Moments 

Zernike introduced a set of complex polynomials, 
which form a complete orthogonal set over the 
interior of the unit circle x2+y2=1. These 
polynomials (Khotanzad, 1990) have the form 

( ) ( ) ( ) ( ϑϑ jqexp,, pqpqpq rRrVyxV == )

 

 (1) 

where p is non-negative integer, q is a non zero 
integer subject to constraints (i) p-|q| being even, (ii) 
|q|≤ p, r is the length of vector from origin ( )yx,  to  
pixel with coordinates (x,y),  θ the angle between 
vector ρ and x axis in counter-clockwise direction, 
Rpq(r) are the Zernike radial polynomials in (r,θ) 
polar coordinates defined as 
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Note that Rp.-q(r)=Rpq(r) 

Zernike moment of order p with repetition q, for 
a digital image with intensity function f(x,y), that 
vanishes outside the unit disk is  
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The rotation invariant property of ZMs has been 

already studied (Khotanzad, 1990). These 
investigations led to the conclusion that the 
magnitudes of ZMs are invariant to any rotation of 
the image. Thus, the magnitudes of the resulted ZMs 
beyond a high order can be used for our 
experiments. 

According to (2) there are a lot of computations 
(factorials) that should be taken into account, in 
order to calculate the radial polynomials. For this 
reason many researchers have introduced methods 
for fast computation of ZMs (Mukundan, 1995). 
Among these, there is an efficient one (Chong, 
2003) the well-known “q-recursive method”. This 
method permits the evaluation of radial polynomials 
by using the following recursive equations,  

 
• for p=q 

 
p
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• for p-q=2 
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• otherwise 
 

)()()()( )2(2
3

21)4( rR
r
HHrRHrR qppqqp −− ++=

 
  
(6) 

 
where the coefficients H1, H2 and H3 are given 

by 
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The original image can be reconstructed using a 
finite number of ZMs, by applying the following 
inverse formula 
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2.2 Pseudo-Zernike Moments 

Pseudo-Zernike moments are used in many pattern 
recognition applications as alternatives to the 
traditional ZMs. It has been proved that they have 
better feature representation capabilities and are 
more robust to image noise (Teh, 1988) than the last 
ones. 

The kernel of these moments is the orthogonal 
set of Pseudo-Zernike polynomials defined inside 
the unit circle. These polynomials have the form of 
(1) with the Zernike radial polynomials replaced by 
the Pseudo-Zernike radial polynomials 
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with additional constraints  

 
∞=≤≤ ,...2,1,0,0 ppq  (10) 

 
The corresponding PZMs are computed using 

the same formula (2) as in the case of ZMs, since the 
only difference is pointed only to the form of the 
polynomial being used. 

Due to the above constraints, the set of Pseudo-
Zernike polynomials of order ≤p, contain (p+1)2 
linearly independent polynomials of degree ≤p. On 
the other hand the set of Zernike polynomilas 
contain only (p+1)(p+2)/2 linearly independent 
polynomilas of degree ≤p, due to the additional 
condition that p-|q| is even. 

Thus, PZMs offer more feature vectors than the 
Zernike moments of the same order. 

As can be seen from equation (9) the computaion 
of Pseudo-Zernike moments, involves the 
calculation of some factorial terms, an operation that 
adds an extra overhead. For this reason, in the 
present paper a reccurence relation among the 
Pseudo-Zernike polynomials is used, for reducing 
the computational time. 

The method that is used is called “two-stage 
recursive” algorithm, whose detailed description can 

be found in (Chong, 2001). This method makes use 
of the following recursive relations  
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• otherwise 
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where the coefficients L1, L2 and L3 are given 
by 
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Similarly to ZMs, an image desscribed by a 

finite number of PZMs, can be reconstruted by using 
equation (8).  

2.3 Fourier-Mellin Moments 

Fourier-Mellin moments, is the third family of 
orthogonal moments, that will be used in the present 
experiments. These orthogonal moments are based 
on a complete set of orthogonal polynomials defined 
over the unit circle and have the form 
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The corresponding orthogonal Fourier-Mellin 

moments (OFMMs) can be defined as 
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where p≥0, q=0,± 1, ± 2,... 
By using an infinite number of moments Φpq,              

-M≤q≤M, 0≤p≤N, where M, N are positive integers, 
the original image can be reconstructed through the 
following formula 
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As in the case of Zernike and Pseudo-Zernike 
moments, the magnitudes of the OFMMs are also 
rotation invariant. The majority of OFMMs in 
contrast to the other orthogonal moments is focused 
on the fact, that they can describe the high spacial 
frequency components of an image more accurately 
(Kan, 2002). This capability comes from the number 
of zeros of their radial polynomials, which is greater 
than the other moments. 

The number of linearly independent OFMMs is 
(p+1)2, so the degree p of Qp in the OFMMs required 
to represent an image can be much lower than a 
representation using ZMs and PZMs. 

Because the Zernike, Pseudo-Zernike and 
Fourier-Mellin moments are only rotationally 
invariant, additional properties of translation and 
scale invariance must be given to these moments in 
some way. We can ensure these invariances by 
converting the absolute pixel coordinates 
(Khotanzad, 1990). 

3 MOMENT COMPRESSION 

In this section a predefined algorithm that consists of 
two complementary paths, involving moment 
computation and a compression method, is 
presented. 

In Fig.1 this algorithm is depicted in a generic 
form, in order to maintain a systematic procedure 
that performs a feature extraction method, while the 
inverse process is also provided. 

The concerned algorithm, which is presented in 
details in (Papakostas, 2002, 2004), can be 
summarized in the following steps: 

 
Direct path 
 
Step 1: The original image is being pre-

processed, (filtering, binarization). 
Step 2: Computation of the orthogonal 

moments to be compressed, with the 
additional ensuring of translation, 
scaling invariance, and finally the 
computation of the so called “moment 
signal”. This 1-D signal consists of the 

resulted moments, in the order they 
have been produced. 

Step 3: Application of the Wavelet transform, 
or an alternative one (Fourier), to the 
“moment signal”. 

Step 4: Compression by thresholding of the 
resulted wavelet (Fourier) coefficients.    

Original
Image

Image
Pre-Processing

Transformation Inverse
Transformation

Image
Post-Processing

Computation of
Orthognal
Moments

Image
Reconstruction

Final
Reconstructed

Image

Normalized
Reconstruction

Error

Compression

 

Figure 1: Generic compression of moment features. 
 
Inverse path 
 
Step 1: Application of the inverse transform, 

upon the compressed coefficients, in 
order to construct the compressed 
“moment signal”. 

Step 2: Image reconstruction using the 
compressed moments, by applying the 
inverse formula of the corresponding 
moment family. 

Step 3: Image post-processing, including 
mapping into the range [0-255], 
binarization or histogram equalization. 

 
The direct path of the above algorithm is applied, 

in order to generate feature vectors with an as small 
as possible dimension, but with an increasing 
amount of image information. The resulted feature 
vectors are consisted of wavelet coefficients that 
describe the compressed moment signal.  

The inverse path being used to verify the 
effectiveness of the moment based feature vectors, 
by means of the normalized reconstruction error. 
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In the present paper, the above direct path of the 
algorithm is applied to the three sets of orthogonal 
moments that have been already presented, and three 
feature vectors are obtained. The resulted feature 
vectors are compared to each other, by computing 
their respective normalized reconstruction errors, 
through the inverse path of the algorithm. 

4 EXPERIMENTAL STUDY  

In this section, the reconstruction performance of the 
three moment families, are presented and compared 
to each other. 

For the present experiments, the wavelet 
transform is used to extract the image coefficients, 
which will be compressed by soft thresholding 
(Donoho, 1995). The binarization procedure is 
performed by thresholding using the Otsu method, 
while the reconstruction performance is measured by 
means of the normalized reconstruction error (Teh, 
1988), defined as   
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where f(i,j) is the intensity function of the 
original image and  f’(i,j) the intensity function of 
the reconstructed one. 

In Figure 2, the mean normalized reconstruction 
error for the set of images used in (Papakostas, 
2004), for each one of the families of orthogonal 
moments, is illustrated. 

As can be seen, in the case of Zernike moments 
the compression method yields to a set of more 
efficient feature vectors, since for the same number 
of features the corresponding error is smaller than 
that of the uncompressed ones. 

 

 

 

 

Figure 2: Uncompressed vs Compressed (a) Zernike, (b) 
Pseudo-Zernike and (c) Fourier-Mellin moments. 
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(a) 

 

(b) 
Figure 3: Zernike, Pseudo-Zernike and Fourier-Mellin moments (a) uncompressed, (b) compressed. 

 
In a sense the “moment signals” consisted of the 
Zernike moments, have some kind of quantization 
error, appeared as noise in the high frequency bands, 
and the application of the compression method 
operates as denoising. This can be verified by the 
fact that Zernike moments are very sensitive to the 
presense of  noise.  

This affect is appeared in a smaller amount in 
Pseudo-Zernike and Fourier-Mellin moments, with 
the last ones being the most robust noise of all.  

Additionaly, Figure 2 points that the proposed 
algorithm can be applied successfuly, in all 
orthogonal moments keeping the appropriate image 
information for the reconstruction of the initial 
image with minimum reconstruction error. 

Finally, Figure 3 shows that the compression 
method improves the reconstruction ability of 
Fourier-Mellin moments more than the Pseudo-
Zernike one. 

For the above experiments some test objects  
(patterns) are initially selected. Figure 4b shows a 
wooden pyramidal puzzle, which is used for robot 
vision tasks in the Control Systems Lab of DUTH.  
The nine parts of the puzzle, placed in arbitrary 
positions, are shown in figure 4a. The (256x256) 
images of these parts are the nine patterns of our 
experiments.  

5 CONCLUSIONS 

An investigation of the performance of a 
compression-based algorithm, to moment signals 
derived from three different families of orthogonal 
moments, was presented in the previous sections. 
The performance was measured, subject to the 
reconstruction error that the compressed moments 
resulted. 

Fourier-Mellin moments seem to improve their 
ability in representing an image by a set of 
compressed feature moments, better than the other 
two families. 

 

(a) 

 
(b) 

Figure 4: The nine work pieces that are placed (a) in 
arbitrary positions on the table and (b) on a 3-D truncated 

pyramid. 
 

The performance of the compressed Pseudo-Zernike 
moments remains quite the same to this of the 
uncompressed ones, while the application of 
compression to the Zernike moment signal can be 
considered as denoising, by removing the high 
frequency components. 
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