PERFORMANCE AND ENERGY OPTIMIZATION OF MULTIMEDIA APPLICATIONSUSING DMA
COMBINED WITH PREFETCH

M. Dasygenis', E. Brockmeyer?, D. Soudris',
F. Catthoor?®, A. Thanailakis', and G. Papakostas’

YWLSI Design and Testing Center,
“Automatic Control Systems Laboratory,
Dept. of Electrical and Computer Eng.
Democritus University of Thrace, 67 100 Xanthi, Greece
{ mdasyg,dsoudris,thanail ,gpapak} @ee.duth.gr

Desics, IMEC, Kapeldreef 75, Leuven, Belgium
3Also professor at the Katholieke Univ. Leuven, Belgium
{ Francky.Catthoor, Erik.Brockmeyer} @imec.be

ABSTRACT

Memory access latency is becoming an increasing
performance problem in modern embedded systems. While
throughput can be addressed by simply widening data
paths and by using several memory banks (at the cost of
area and energy), no such simple solution strategy is
available for reducing latency. To counter this bottleneck,
numerous techniques, methodologies or performance
enhancements, involving hardware and/or software
means, have been proposed to hide memory access
latency. This paper presents a novel systematic approach
to hide this latency using the Direct Memory Access
(DMA) mode, which is present in all modern memories,
combined with a software prefetch mechanism. It is shown
that in applications that make use of large block transfers,
the off-chip memory accesses can be hidden from the
processor resulting in efficient designs in terms of
performance (while still reducing energy for the same task
execution). Experimental results on six well known
multimedia and imaging applications that were measured
using the Tl C6201 Device Smulator, illustrate that the
memory latency can be masked efficiently, improving the
performance by more than 45%.

1. INTRODUCTION

The design of embedded or integrated systems has
become more and more complex, especially due to their
particular characteristics and specific usage (for instance
mobile computing), which require stringent energy and
area constraints. On the other hand, in data dominated
applications, like interactive multi-media, data storage and
transfers are the most important factors in terms of meeting
the real time constraints that are imposed. The main
bottleneck of these applications is the huge amount of

transfers and storage requirements from and to on-chip and
off-chip memory that results in extreme power
consumption and performance degradation.

This bottleneck has become more crucial, as the gap
between processor and memory speeds continues to grow.
The large bandwidth that is required to fulfill the time
criticl and memory intensive applications, poses a
significant barrier in the realization of complex real time
embedded systems. An obvious solution could be a system
consisting of many multiport memories. However, such a
memory organization increases prohibitively the total
energy consumption, making it a non practical solution.
Multi-port memories cause a large cost in area and power
and high-speed memories are restricted to very small sizes.
However, they may not be avoidable in stringent timing
constraints. Hence, techniques that on one hand the real
time constraints are met and one the other hand efficient
embedded readlizations of the memory architecture are
achieved are required.

To counter this bottleneck, numerous techniques
methodologies or performance enhancements, involving
hardware and/or software means, have been proposed to
hide memory access latency. One of the ways of
overcoming this increasing disparity between processor
and memory access speed is using prefetching techniques.
While prefetching does not reduce the latency of memory
access speed, it hides this latency by overlapping memory
accesses and instruction execution. In the literature, a
number of hardware-based data prefetching techniques
exist for some time, many of which customize hardware
for specific memory reference patterns. Chen and Baer
have proposed stride prefetchers [1] that correlate non-unit
data address striders with a memory instruction PC in a
small table and prefetch based on stride. Jouppi has
proposed stream buffers [2] to detect and prefetch the
stride, while Joseph and Grunwald have proposed Markov

prefetchers [3] associating multiple subsequent addresses
with each correlation. A novel research work was
presented by Lai et a [4], in which they have introduced a
hardware prefetcher which performs dead block prediction
and dead block correlation, in order to accurate, precise
and timely prefetch the required blocks. Finaly, a recent
hardware scheme disclosed by Hu et al [5], has introduced
new useful metrics regarding generational behavior in
cache lines, and presented hardware structures that exploit
these metrics to improve performance. Solely hardware
prefetching can boost the performance of an applications,
but it is only applicable to specific types of applications
that exhibit good spatial locality with few algorithmic
dependencies. Applications that consists of loops with
small production/consumption windows like multimedia
applications, cannot benefit from the hardware prefetching,
because the large number of dependenciesis a key hurdle,
that can only be circumvented by algorithmic
transformations.

Except the hardware prefetching techniques, authors
have suggested the use of software prefetching. One of the
first research works that addressed the prefetching
techniques using compiler-based techniques was from
Lipasty et al [6] and Mowry et al [7] who developed
heuristics that consider pointers passed as arguments on
procedure calls and inserted prefetchers at the call sites for
the data references by the pointers. Horowitz et al [8] have
approached this problem by proposing a new class of
memory operations called informing memory operations,
which essentially consist of a memory operation combined
with a conditional branch-and-link operation that could be
used to tailor software-controlled prefetching. Cooksey et
al [9] on the other hand, proposed a hardware only data
prefetching architecture that exploits the memory
alocation used by operating systems to improve the
performance of pointer intensive applications. A mixed
hardware/software based solution was also proposed by
Gschwind et al [10], in which they extended (i) the
memory subsystem by intergrading a prefetch buffer
mechanism, and (ii) the MIPS R3000 instruction set to
include instructions to initiate the prefetching in an given
application. A thorough cost/performance analysis of data
prefetching was presented by Metcalf [11], who classified
the different kinds of prefetching modeled and compared
them. Finally, Grun et al [12] addressed the dominant
bottleneck of memory access speed, by proposing recently
the APEX framework, an approach that extracts, analyzes
and clusters the most active access patterns in the
applications, and aggressively customizes the memory
architecture to match the needs of the application, using
memory models. Again software prefetching alone, cannot
yield significant performance improvement, due to its
unavailability to handle data dependencies. As the
experimental results show in Section 6, an efficient way of
confronting the memory latency, is an approach of

software prefetching, which is pipelined and performed
using DMA

In thiswork the problem of hiding the memory latency
is addressed by employing a prefetch mechanism
combined with the DMA mode that most current
embedded systems have. To the best of our knowledge
until know, nobody has systematically considered the
beneficial opportunities of prefetching combined with
DMA. Designers are using this today manually in an ad
hoc way in the critical parts of their code, but thisis very
tedious and error-prone. We attempt to bridge this gap,
and illustrate that performance (and power) can be
improved by the combination of prefetching and DMA.
Five motion estimation (ME) kernels, belonging to the
multimedia domain, and one image processing application,
are used as test vehicles. Multimedia and imaging
applications have a uniform and known a priori memory
access pattern. In this paper we remedy the identified
problem with only a small penalty in terms of design time
in making the prefetch copies and initiating explicitly the
DMA transfer. As the experimental measurements show,
prefetching combined with DMA gives a boost in
performance (e.g. ~45% performance improvement on the
Quadtree Structured Difference Pulse Code Modulation
(QSDPCM) [13]) because al the off-chip memory
accesses are successfully hidden from the CPU. Also the
related energy waste is reduced.

The rest of the paper is structured as follows: Section
2 introduces the target memory architecture we have
considered while Section 3 briefly describes the DMA
access mode. Then, Section 4 presents the prefetching
technique, followed by Section 5 which analyzes how
DMA is combined with prefetching. The subsequent
Section discusses the demonstrator applications and
experimental results, concluding with Section 7.

2. TARGET MEMORY ARCHITECTURE

The memory architecture that is used in this research
work is depicted in Figure 1, which is a simplified block
diagram of the TMS230C6000 CPU architecture [14].
This architecture consists of a‘C6000 CPU core with two
independent 32-bit data paths for accessing on-chip or off-
chip memory, two blocks of on-chip memory, a
program/data bus, a peripheral off chip DMA (Direct
Memory Access) controller and an external memory. The
amount and location of internal memory depends on the
particular device selected. In our case (6201 CPU core),
exist two 32Kbytes on-chip memory blocks. On the data
bus, a data memory controller is introduced, which
services requests to internal memory by either the CPU or
the DMA. Off-chip and on-chip memory are used in a
continuous memory map, which means that some memory
addresses are located in the on-chip space, some are
reserved, and some are located off-chip.

3. DMA OVERVIEW

In most contemporary embedded systems, memory
transfers from (to) off chip memory can be performed in
many ways. The easiest and most common (but very
inefficient) way is when the CPU controls and operates the
transfer. When the transfer is CPU controlled the processor
stalls because it does not perform any computation at all,
but waits for the memory transfers, which require multiple
cycles, to be completed. An alternative way to perform the
transfer is the Direct Memory Access (DMA) mode. If the
transfer occurs in this way, the CPU is not responsible for
operating the memory transfer, but that task is deferred to
another controller, which is called a DMA controller.
Utilizing DMA transfers means that the CPU can be used
in performing other tasks. In order to use this mode, the
processor has to specifically instruct the DMA to start
copying from (or to) off chip memory, to (or from) on chip
memory. This is accomplished by a group of assembly
commands that are gpecific to every embedded
architecture. During a DMA transfer, the CPU can request
data from the on-chip memory which have not been
fetched yet. In order to avoid this problem, a register can
be set when the DMA transfer has finished, which will be
checked by the CPU before it access the on-chip data. If
the DMA transfer has not finished, the CPU will have to
wait (denoted as DMA_WAIT) until the flag is set,
otherwise the on-chip data that the processor requires, may
be invalid. It is evident that the time spent in the
DMA_WAIT has to be limited. Usually DMA_WAIT
statements are placed as late as possible, but not more
lately than the place that the specific on chip data is
required by the processor. Ideally the transfer would have
been completed by the time the processor reaches the
DMA_WAIT and thus no cycles will be spent stalling.
However putting the DMA transfer later, requires more on-
chip memory space. This side effect arises from the
increased life time of on-chip memory data, making
inplace mapping techniques for memory compaction less
effective [15]. In redlistic cases a complete removal of the
stallsis not always possible, which means that some cycles
are spent in DMA_WAIT statements. Alternative, another
thread could be initiated. Of course, interleaving of
processing threads could result in much overhead.

Usualy in current embedded systems, more than one
DMA channel is available to the developer. The DMA
channel with the lowest number (i.e. DMADO), is the
channel with the highest priority and vice versa. DMA
transfers cannot be performed in parallel. For this reason,
if multiple DMA transfers are initiated, the DMA transfer
of the highest priority will be completed first, and then the
DMA of the next priority will continue. Finally the DMA

transfer should be as large as possible, because starting a
DMA imposes an overhead to the system.

‘C6000
CPU CORE

Data Path 1 ” Data Path 2

Data Memory = Program/Data Data Memory
(OnChip) Bus (OnChip)

External
Memory

D.M.A.
Controller

Figure 1. The Memory Architecture of the T C6201

The combination of the previous facts, enables the
designer to initiate a very large DMA with low priority,
which will have to be completed in a very large time
window. When small off-chip accesses are required, these
can happen with the highest priority, suspending
temporarily the previous ongoing DMA. After the DMA
with the highest priority is concluded, the first DMA will
resume (without the extra overhead of re-initiating the
DMA transfer).

4. PREFETCHING

The memory subsystem is a key bottleneck in
embedded applications. To reduce memory stall time,
many current processors support, software-controlled
prefetching. With this technique, the compiler or
programmer schedules an explicit prefetch instruction for a
memory location that will be accessed by the processor at
a later time, with the goal of bringing the off-chip data
elements into the on-chip internal memory, before the CPU
issues a demand memory access [16].

A large portion of many applications, and especially
applications that make use of large multidimensional
arrays, are heavily dominated by read and write accesses to
arrays. These arrays are too big to fit in on-chip memories,
and for this reason they are placed in large off-chip
memories. These operations cannot be adequately speeded
up by caches, as they exhibit poor locality and a large
working sets, incurring many capacity misses. However,
accesses to this type of data are very predictably. After
accessing an element, the probability is high that the next
element will be accessed. Multimedia applications, like
motion estimation kernels, exhibit a high predictability
when the current and previous frames are accessed. For
this reason prefetching is especially useful in this kind of
applications. This prefetching occurs concurrently with the

execution of the actual program. Thus, the penalty incurred
by accessing off chip memory elements is hidden under
normal program execution. This trandates into a high
effectiveness of the prefetching. But the latency is still a
problem in many applications that require strict timing
constraints.

5. PREFETCHING COMBINED WITH DMA

To alleviate the bottleneck of the memory latency we
have combined the prefetching technique with the DMA
mode that modern memories provide. Two key points are
to be decided in this context. What are the prefetching
candidates, and where to place the DMA wait statements!

5.1 PREFETCHING CANDIDATES

In order to specify the prefetch candidates the
prototype tool MHLA [17] is used. This tool takes
advantage of temporal locality and limited lifetime of the
memory architecture constraints while taking into account
the copy overhead, and explores all the possible different
layer assignments. One of the outputs of thistool is a set of
copy candidates (CC, i.e. prefetch copies) for a specific
on-chip memory size. The tool has performed a design
space exploration on the six applications, and the prefetch
copies are available. Any selected prefetch copies can be
implemented in the code in such a way that the CPU
controls the transfer (using for-loop or the ‘memcopy’
function).

Generally speaking, a relation exists between the size
of a CC and the number of transfers from the higher layer,
typically called misses (see Fig. 2). This figure shows a
simple loop nest with one reference to an array A with size
250. The array has 10000 accesses. Several CCs for array
A are possible. For example we could add a copy A" of
size 10 which is made in front of the k-loop by adding the
statement “for (z=0;z<10;z++) A'[Z=A[j*10+Z];". This
statement is executed 100 times, resulting in 1000 misses
to the A array. This CC point is shown in Fig 2b. Note that
the good spatia locality in this example does not influence
the amount of misses to the next level. In theory any CC
size ranging from one element to the full array size is a
potential candidate. However, in practice only alimited set
of CCs leads to efficient solutions. Obvioudly, a larger CC
can retain the data longer and can therefore avoid more
misses. All possible CCs for this very simple case are
shownin Fig. 2 b.

5.2 USING DMA TRANSFERS

The second key point is to replace the memcopy
commands with the DMA commands. A DMA transfer
consistsof aDMA_START and aDMA_WAIT command.
The DMA_START command instructs the DMA

controller to start the DMA transfer for a given block size,
from a specific off-chip (or on-chip) memory address to a
specific on-chip (or off-chip) memory address. The
DMA_WAIT command is a crucial point in the DMA
implementation. In the DMA_WAIT command, the
processor salls, waiting for the DMA transfer to be
completed. When the DMA transfer is completed, then the
processor can resume the execution of the application. The
DMA_WAIT datement usualy is placed after a
computational intensive nested loop. Thus while the CPU
is performing the computations, the DMA performs the
memory transfer. In case a dependency between elements
exists that are involved in the DMA transfer, loop
transformations to break the dependencies are employed,
like loop pipelining or loop unrolling [15].

misses Data Reuse
Possibilities

Copy Candidates

Application
int A[250]; 10000

for(i=0;i<10;i++)
for(j=0;j<10;j++)
for(k=0;k<10;k++)
for(I=0;1<10;1++)
read(A[j*10+]);

Figure 2. Copy Candidates Example

The core of the proposed approach is to hide the
prefetch techniques from the CPU using DMA. This means
that the DMA transfer must take place and happen in
parallel with a CPU computational task. Thus, when CPU
finishes the computation and continues the execution of the
program, the off-chip data that will be required, will have
been transferred to on-chip and will be available. This
results in hiding the off-chip memory access latency.
Figure 3 and 4 illustrate two effective transformations,
using DMA prioritiesand DMA pipelining, respectively.

52.1DMA PRIORITIES

Figure 3 illustrates the approach when multiple DMA
priorities are used. In Figure 3 (i) the block copy
commands transfer arrays from the off-chip to the on-chip
space for prefetching, which is done with the CPU. The
next step is to transform these block _copy commands to
DMA transfer commands. For this reason in Figure 3(ii)
the DMAOQO_START and DMAO WAIT commands are
added, denoting that the DMA priority O has to be
initiated. The second DMA transfer has no dependencies
from the previous loop. For this reason, this DMA transfer
(from off-chipA to on-chipB) can be initiated in advance,
before the computation of the previous loop. However, in
the previous loop another DMA transfer exists which
prohibits us to use the same priority. For this reason the
second DMA transfer is initiated using a lower priority
(denoted as DMA1_START). Figure 3 (iii) shows the final

version of the algorithm, in which the transfer off-chipA to
on-chipB is initiated in advance with priority 1. Thus,
when there is the need to transfer from off-chipC to on-
chipD, the DMA1 is suspended, because a DMA transfer
with a higher priority isinitiated. When DMAQO is finished,
the DMA1 can resume its operation. In this way the DMA
transfer from off-chipA to on-chipB has been masked from
the CPU. The efficiency of this masking is reflected on the
CPU dtalled cycles on the DMA1 wait statement. If there
are few cycles (or none) spent waiting in this wait
statement, then the masking is successful. With other
words, if the DMAL1 transfer requires a number of cycles
similar to the number of cycles that are required by the
CPU to perform the computation of the nested loop, then
the masking is efficient. Selecting the loop that will mask
the DMA transfer is a very crucial point, and for this
reason further investigation to automate this is needed.
Finaly, the DMAOQ wait statement cannot be masked due
to existing dependencies.

52.2DMA PIPELINE

Figure 4 illustrates another approach that is followed
in hiding the DMASs using pipelining. In Figure 4 (i) a
DMA transfer goes from an off-chip memory (off-chipA)
to an on-chip memory (on-chipB of ‘size’ bytes). In the
subsequent loop, a dependency prohibits the masking of
this DMA transfer by moving the DMA_WAIT statement
after the loop. In order to break this dependency, loop
pipelining is employed, and on-chipB is doubled in size
(Figure 4 (ii)). In the same figure also it is illustrated that
the first iteration of the DMA transfer is unrolled in order
to create the DMA pipeline. This results in the situation
that when the CPU computes the motion vectors of the
current iteration, the DMA transfers elements of the next
iteration. The dependency is now broken, and in Figure 4
(iii), the DMA_WAIT statement has been moved to the
end of thisloop nest. Again this DMAO_wait statement has
to be evaluated and measured in terms of CPU cycles spent
stalling there. Finally, the first DMAOQO_wait statement,
which is the pre-pipeline context, cannot be masked due to
dependencies.

In four of the six applications that we have analyzed,
namely Full Search (FS), Hierarchica Search (HS),
Parallel Hierarchical One Dimensional Search (PHOD),
and 3 Step Logarithmic Search (3SLOG) [18] only one
prefetch candidate is present and one computational loop,
and thus the DMA_WAIT statement is placed after the
nested loop. In the QSDPCM and CAVITY applications
multiple prefetch candidates and multiple loops exist. For
this reason, more than one DMA channel with different
priorities is used. Again the goa is to mask the DMA
transfer, for this reason the DMA_WAIT statement is
placed after a subsequent nested loop. A point that has to

be stressed is that the memory hierarchy consists of one
on-chip memory and one off-chip memory, both addressed
by a common memory map. For this reason, the arrays are
specifically placed in memory addresses establishing this
way that the prefetch copies are on-chip and the
current/previous frames are off-chip.

6. DEMONSTRATORSAND EXPERIMENTAL
RESULTS

Our demonstrator applications are selected to be
several well known real-life motion estimation and
imaging algorithms: (i) Quadtree Structured Difference
Pulse Code Modulation (QSDPCM), (ii) Full Search (FS),
(ili) Hierarchical Search, (iv) Paralel Hierarchica One
Dimensional Search, (v) 3-Step Logarithmic Search
(3SLOG), (vi) Cavity Detection. To evaluate the
performance benefit derived from the prefetch mechanism
combined with DMA, we measure the execution time of
the real life multimedia kernels executed on the embedded
development suite, TI Code Composer Simulator [19]. All
the measurements are performed using typical parameters
of these applications. The experiments are carried out with
the luminance component of QCIF frame (144x176)
format, while blocks of 16x16 pixels are selected. All
these algorithms calculate the motion vectors of two
successive frames, but they differ in granularity, the
precision and the complexity. Specifically, the QSDPCM
algorithm is an interframe compression technique for video
images. It involves a motion estimation step, and a
quadtree based encoding of the motion compensated
frame-to-frame difference signal. Finally, The Cavity
detection agorithm is an image processing application
used mainly in the medical field for detecting tumor
cavities in computer tomography pictures and is based on
edge detection.

Most video coding concepts contain a motion
compensated temporal DPCM (differential pulse coding
modulation) module in which the motion compensated
prediction (MCP) error image is transform coded,
employing the widely introduced discrete cosine transform
(DCT). In the QSDPCM method, the MCP error image is
adaptively decomposed in blocks of variable size, wherein
each block the MCP error image is represented by the
local sample means. The variable block size structure is
described by a quadtree. The local sample means are
independently Huffman coded. QSDPCM has the highest
computational complexity of all the other three algorithms,
but it yields the best signal-to-noise (SNR) ratio. FS
algorithm has a high computational complexity also and is
a very expensive (in terms of operations per frame), but
guarantees finding the optimal motion vectors due to the
thoroughly frame motion scan.

for(vy=0;vy<(SA2*2+1);vy++) {
BLOCK_COPY_DATA(off-chipC,
on-chipD, size2)

for(vx=0;vx<(SA2*2+1);vx++){dist=0;
for(y2=0,y2<8;y2++){
for(x2=0;x2<8;x2++){
p1=x[XXX];
p2=on-chipD[XXX];
dist+=abs(p1-p2);}}
v2ymin=((dist<min)?vy:v2ymin);
v2xmin=((dist<min)?vx:v2xmin);
min=((dist<min)? dist:min}

BLOCK_COPY_DATA(off-chipA,
on-chipB, size1)

for(vy=0;vy<(SA2*2+1);vy++) {

DMAO_START(off-chipC,
on-chipD, size2);
DMAO_WAIT;

for(vx=0;vx<(SA2*2+1);vx++){dist=0;
for(y2=0,y2<8;y2++)X

for(x2=0;x2<8;x2++){
p1=x[XXX];
p2=on-chipD[XXX];
dist+=abs(p1-p2);}}
v2ymin=((dist<min)? vy:v2ymin);
v2xmin=((dist<min)?vx:v2xmin);
min=((dist<min)? dist:min}

DMAO_START(off-chipA,
on-chipB, size1)
DMAO_WAIT;

DMA1_START(off-chipA, on-chipB, size1)

forffy=0;vy<(SA2*2+1);vy++) {
DMAO_START (off-chipC,
on-chipD, size2);
DMAO_WAIT;

for(vx=0;vx<(SA2*2+1);vx++){dist=0;
for(y2=0,y2<8;y2++){

for(x2=0;x2<8;x2++){
p1=x[XXX];
p2=on-chipD[XXX];
dist+=abs(p1-p2);}}
v2ymin=((dist<min)? vy:v2ymin);
v2xmin=((dist<min)? vx:v2xmin);
min=((dist<min)?dist:min}

DMA1_WAIT;

0] (ii)

(iii)

Figure 3: Hiding DMASs using priorities

char on-chip[Z™size];
char on-chipBJsize];

DMAO_WAIT;
for(vy=0;vy<(SA2*2+1),vy++) -
DMAO_START(off-chipA,

for(vv=0;vy<wy++) {
on-chipB, size1); if(vy<4

for(x2=0;x2<8;x2++){
p1=x[XXX];
p2=on-chipB[XXX];
dist+=abs(p1-p2);}}
v2ymin=((dist<min)?vy:v2ymin);
v2xmin=((dist<min)?vx:v2xmin);
min=((dist<min)?dist:min}

0}

(ii)

DMAO_START(off-chipA,
on-chipB[(0)%2*size], size1);

on-chipB[(vy+1)%2*size],

DMAO_WAIT; {DMAO_START(off-chipA,
size1);
for(vx=0;vx<(SA2*2+1);vx++){dist=0; DMAQ_WAIT;

for(y2=0;y2<8;y2++){ for(v. =0;vx<(SA2*2+1));E/x++){dist=0;

dist+=abs(p1-p2)
v2ymin=((dist<min)? vy
v2xmin=((dist<min)? vx:v2xm
min=((dist<min)?dist:min}

char on-chipB[2*¥size];

DMAO_START(off-chipA,
on-chipB[(0)%2*size],size1);
DMAO_WAIT;

for(vy=0;vy<5;vy++) {
if(vy<4)
{DMAO_START (off-chipA,
on-chipB[(vy+1)%2*size], size2);

for(vx=0;vx<(SA2*2+1);vx++){dist=0;
for(y2=0,y2<8;y2++){
for(x2=0;x2<8;x2++){
p1=x[XXX];
p2=on-chipB[(vy)%2*size +XXX];
dist+=abs(p1-p2);}}
v2ymin=((dist<min)?vy:v2ymin);
in); v2xmin=((dist<min)?vx:v2xmin);

. _\ min=((dist<min)?dist:min

DMAO_WAIT;
(ii)

Figure 4: Hiding DMAs using pipelining

HS is a fast ME scheme that use a combination of
search strategies that use both fewer search locations and
fewer pixels in computing the motion vectors, while
PHODS and 3SLOG belong to the class of very fast
algorithms that reduce the motion—estimation complexity
by reducing the number of search locations that are used in
determining the motion vectors. Cavity on the other hand,
consists of 10 loop nests and its complexity is a little
higher than FS.

The applications are measured in the Code Composer
Simulator, using copy candidates where applicable, but
without using DMA for the memory transfers (denoted as
original). Then they are measured using DMA overlaid
with CPU computations (denoted as prefetch+dma). Figure
5, presents the performance measurements of the six real-
life applications. The y-axis is in logarithmic scale, in
order to have all the applications depicted on the same
plot. The y-axis, presents the cycles spent performing the
computations, excluding the 1/O functions. The lower the
value, the better performance the application has, because
it is executed in fewer cycles. Figure 6 illustrates in a
different way the performance gain of every application.

The values depicted in this graph show the percentage of
the performance improvement, compared with the original
(1- performance optimized /performance_original).
QSDPCM application has the highest performance
improvement (47%) because it is an application that has a
large number of computational intensive loops. On the
other hand, the motion estimation kernels exhibit smaller
performance gains since they have less computational
complexity than QSDPCM. Specifically the performance
gain of FS, HS, 3SLOG and PHODS is 10%, 12%, 8% and
23% respectively, while CAVITY has a performance gain
of 33%.

A measure of the efficiency of the DMA mode is the
cycles of the CPU that are spent in stalling during the
DMA_WAIT statement. An efficient DMA
implementation depends on the minimization of the cycles
spent in the DMA_WAIT. Figure 7 presents the cycles
spend in the ME applications. It can be easily seen that the
cycles spent are indeed minimal; for example QSDPCM
application has only 14954 cycles in CPU stalling during
the DMA_WAIT, which is a very small percentage of the
total cycles in the optimized application (< 1%). Figure 8

illustrates different Prefetch+tDMA possibilities for the
QSDPCM application. In order to achieve optimum
efficiency, the prefetch candidates have to be carefully
selected together with their on-chip memory size and the
proper scheduling of the DMA transfer. Different choices,
lead to different performance. Thus, the designer can study
the global trade-off curve, and decide the implementation
that best fits his constraints.

Performance

3.E+09

@ Original
3.E+09 @ Prefetch+DMA

2E+09

2.E+09

Cycles

1E+09

- :.:':i

0.E+00 -

QSDPCM Fs HS 35LOG PHODS CAVITY
Application

Figure 5. Performance evaluation of original and
optimized ME applications (y-axis: logarithmic scale)

Performance Improvement

50.00%
45.00%
40.00%
35.00% T

| = oma+Prefetch |

= 30.00% T
S 25.00%
£ 20.00%
15.00% T
] [] =
D:Oﬂ% \—‘ \—‘ \—‘
QSDPCM FS HS 3SLOG PHODS CAVITY
Application
Figure 6. Performance improvement of the optimized ME
applications

The performance improvements also have a direct
positive impact on the energy consumption for a given task
(The instantaneous power is probably the same). Tl has
published an application report [20] that analyzes the
power consumption on the Tl devices and peripherals. In
this report it is shown that the C6201 core consumes ~49%
of total power consumption of the system for high or low
activity models, while peripherals (like the DMA
controller) consumes 1% of the total power consumption
and hence have nearly no overhead when activated. This
means that decreasing the execution cycles on the core of a
given application utilizing DMA mode has a strong direct
impact on the overall power consumption. It is known that
fewer cycles spent on an application execution, for the
same energy cost/cycle, trandlates to fewer mW dissipated
by the system. We are not able to provide accurate
numbers of the power reduction at this point due to the
lack of information on the Tl core breakdown), but it can
be safely assumed that a performance increase of 45% has
an energy decrease of nearly the same value to implement
the same task.

CPU Cycles in DMA_WAIT

16000

14000

12000
10000

8000 © DMA+prefetch

6000

Cycles

4000

2000

QSDPCM FS HS 3SLOG PHODS CAVITY
Application

Figure 7. CPU stall cyclesin DMA_WAIT statement

In the case that hardware prefetchers as [11] or [12] are
used in the specific applications, it is expected that the
efficiency will be reduced, because the hardware schemes
perform only prefetching and not any agorithmic
modifications. These applications have a lot of
dependencies which they can only be broken using specific
algorithmic transformations (i.e. loop pipeline), diluting
the effectiveness of pure hardware prefetching. Without
performing eg. software pipelining, the elaborated
hardware like DMA controllers or data movers or
hardware prefetchers would have abysmal efficiency. The
key contribution of this paper is that software prefetching
which is pipelined and performed using DMA exhibits a
significant performance and power improvement.

7. CONCLUSIONS

The memory hierarchy plays an important role and should
be used efficiently in embedded systems. One of the key
obstacles in achieving high memory performance
utilization is memory access latency. As a result, various
techniques have been devised to hide memory access
latency. This paper illustrates that the performance (and
power consumption) of multimedia and image processing
applications, which are characterized by a uniform access
pattern, can be significantly improved, by using the DMA
mode that most contemporary systems have, combined
with the prefetch mechanism. Six real life applications are
used as test vehicles for evaluation. The measurements
show that it is possible to mask the prefetch latency, using
the DMA mode, with a cost overhead of increased usage of
on-chip memory space. This results in applications that
perform faster and consume less energy to execute the
same task. These results motivate further research in
developing an interactive design support tool that will
analyze the code and present all the possible tradeoffs
between performance and on chip memory size.

ACKNOWLEDGEMENTS

This work was partially sponsored by a scholarship from
Public Benefit Foundation of Alexander S. Onassis and
from Marie Curie Host Fellowship project HPMT-CT-
2000-00031.

REFERENCES

[1] Tien-Fu and Jean-Loup Baer, “Reducing memory
latency via non-blocking and prefetching caches’, Proc.
ASPLOSV, pp. 51-61, October 1992.

[2] Norman P. Jouppi, “Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers’, Proc. 17" Annual
International Symposium on Computer Architecture, pp.
364-373, May 1990.

[3] Doug Joseph and Dirk Grunwald, “Prefetching using
Markov Predictors’, |IEEE Transactions on Computers,
48(2): pp. 121-133, February 1999.

[4] An-Chow Lai, Cem Fide and Babak Falsafi, “Dead-
Block prediction & Dead-Block Correlating Prefetchers’,
ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 144-154, July 2001.

[5] Zhigang Hu, Stefanos Kaxiras and Margaret
Martonosi, “Timekeeping in the Memory System:
Predicting and Optimizing Memory Behavior”, Proc. 29"
Int. Symposium on Computer Architecture, pp. 209- 220,
May 2002.

[6] M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger,
“SPAID: Software prefetching in pointer and call intensive
environments’, Proc. of 28th Annual Int. Symp. on Micro
Architecture, Ann Arbor, Michigan, pp 231-236, Nov.
1995.

[71 T. Mowry, M. Lam, and A. Gupta, “Design and
evaluation of a compiler algorithm for prefetching”, Proc.
of 5" Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, ACM,
pages 62-73, Boston, Oct. 1992.

[8] M. Horowitz, M. Martonosi, T. Mowry, M. Smith,
“Informing Memory Operations. Providing Memory
Performance Feedback in Modern Processors’, |SCA
1996, pp. 260-270.

[9] R. Cooksey, S. Jourdan, and D. Grunwald, “A
Sateless, Content-Directed Data Prefetching
Mechanism”, ACM, San Jose, CA, USA, pp. 279-290

[10] M. Gschwind, and T. Pietcsh, “Vector Prefetching”,
ACM SIGARCH Computer Architect News, Volume 23,
Issue 5, December 1995, pp. 1-7.

Tradeoff Onchip vs Performance

3,E+09

3,E+09

2,E+09 4=

_D QSDPCM

2,E+09 =

1,E+09 =i E—

Performance(cycles)

5,E+08 et E—

0,E+00

2048 2.348 3.304
Onchip Memory(bytes)

Figure 8. Tradeoff in QSDPCM application between on-
chip memory size and performance

[11] C. Metcalf, “Data Prefetching: A Cost/Performance
Analysis’, http://www.incert.com/metcal f/papers/prefetch,
1993.

[12] P. Grun, N. Dutt, and A. Nicolau, “Access Pattern-
Based Memory Connectivity Architecture Exploration”,
ACM Trans. on Embedded Computing Systems, Vol. 2, pp.
33-73, Feb. 2003.

[13] P. Strobach, “QSDPCM - A New Techniquein Scene
Adaptive Coding”, Proc. 4th Eur. Sgnal Processing
Conf., Grenoble, France, Amsterdam, pp.1141-1144, Sep.
1988.

[14] Texas Instrument Code Composer Studio Manuals,
TMS320C6000 Technical Brief, SPRU197D, Feb. 1999.
[15] F. Catthoor et al, “Custom Memory Management
Methodology- Exploration of Memory Organization for
Embedded Multimedia System Design”, Kluwer Academic
Publishers, Boston, 1998.

[16] D. Callahan, K. Kennedy, and A. Porterfield,
“Software Prefetching”, Proc. of 4™ Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 1991.

[17] E. Brockmeyer, M. Miranda, H. Corproraal, and F.
Catthoor, “Layer assignment techniques for low energy in
multi-layered memory organizations’, Proc. of DATE' 03,
pp. 1070-1075.

[18] V. Bhaskaran and K. Konstantides, “Image and Video
Compression Standards’, Kluwer Academic Publishers,
1998.

[19] Texas Instrument Code Composer Studio IDE C6000
for the TM S320C6000, http://www.ti.com.

[20] Texas Instrument Code Composer Studio Manuals,
TMS320C62x/C67x Power Consumption Summary,
SPRA486C, July 2002.

