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ABSTRACT 

 
Memory access latency is becoming an increasing 
performance problem in modern embedded systems. While 
throughput can be addressed by simply widening data 
paths and by using several memory banks (at the cost of 
area and energy), no such simple solution strategy is 
available for reducing latency. To counter this bottleneck, 
numerous techniques, methodologies or performance 
enhancements, involving hardware and/or software 
means, have been proposed to hide memory access 
latency. This paper presents a novel systematic approach 
to hide this latency using the Direct Memory Access 
(DMA) mode, which is present in all modern memories, 
combined with a software prefetch mechanism. It is shown 
that in applications that make use of large block transfers, 
the off-chip memory accesses can be hidden from the 
processor resulting in efficient designs in terms of 
performance (while still reducing energy for the same task 
execution). Experimental results on six well known 
multimedia and imaging applications that were measured 
using the TI C6201 Device Simulator,  illustrate that the 
memory latency can be masked efficiently, improving the 
performance by more than 45%. 
 

1. INTRODUCTION 
 

The design of embedded or integrated systems has 
become more and more complex, especially due to their 
particular characteristics and specific usage (for instance 
mobile computing), which require stringent energy and 
area constraints. On the other hand, in data dominated 
applications, like interactive multi-media, data storage and 
transfers are the most important factors in terms of meeting 
the real time constraints that are imposed. The main 
bottleneck of these applications is the huge amount of 

transfers and storage requirements from and to on-chip and 
off-chip memory that results in extreme power 
consumption and performance degradation. 

This bottleneck has become more crucial, as the gap 
between processor and memory speeds continues to grow. 
The large bandwidth that is required to fulfill the time 
critical and memory intensive applications, poses a 
significant barrier in the realization of complex real time 
embedded systems. An obvious solution could be a system 
consisting of many multiport memories. However, such a 
memory organization increases prohibitively the total 
energy consumption, making it a non practical solution. 
Multi-port memories cause a large cost in area and power 
and high-speed memories are restricted to very small sizes. 
However, they may not be avoidable in stringent timing 
constraints. Hence, techniques that on one hand the real 
time constraints are met and one the other hand efficient 
embedded realizations of the memory architecture are 
achieved are required. 

To counter this bottleneck, numerous techniques 
methodologies or performance enhancements, involving 
hardware and/or software means, have been proposed to 
hide memory access latency. One of the ways of 
overcoming this increasing disparity between processor 
and memory access speed is using prefetching techniques. 
While prefetching does not reduce the latency of memory 
access speed, it hides this latency by overlapping memory 
accesses and instruction execution. In the literature, a 
number of hardware-based data prefetching techniques 
exist for some time, many of which customize hardware 
for specific memory reference patterns. Chen and Baer 
have proposed stride prefetchers [1] that correlate non-unit 
data address striders with a memory instruction PC in a 
small table and prefetch based on stride. Jouppi has 
proposed stream buffers [2] to detect and prefetch the 
stride, while Joseph and Grunwald have proposed Markov 



prefetchers [3] associating multiple subsequent addresses 
with each correlation. A novel research work was 
presented by Lai et al [4], in which they have introduced a 
hardware prefetcher which performs dead block prediction 
and dead block correlation, in order to accurate, precise 
and timely prefetch the required blocks. Finally, a recent 
hardware scheme disclosed by Hu et al [5], has introduced 
new useful metrics regarding generational behavior in 
cache lines, and presented hardware structures that exploit 
these metrics to improve performance. Solely hardware 
prefetching can boost the performance of an applications, 
but it is only applicable to specific types of applications 
that exhibit good spatial locality with few algorithmic 
dependencies. Applications that consists of loops with 
small production/consumption windows like multimedia 
applications, cannot benefit from the hardware prefetching, 
because the large number of dependencies is a key hurdle, 
that can only be circumvented by algorithmic 
transformations. 

Except the hardware prefetching techniques, authors 
have suggested the use of software prefetching. One of the 
first research works that addressed the prefetching 
techniques using compiler-based techniques was from 
Lipasty et al [6] and Mowry et al [7] who developed 
heuristics that consider pointers passed as arguments on 
procedure calls and inserted prefetchers at the call sites for 
the data references by the pointers. Horowitz et al [8] have 
approached this problem by proposing a new class of 
memory operations called informing memory operations, 
which essentially consist of a memory operation combined 
with a conditional branch-and-link operation that could be 
used to tailor software-controlled prefetching. Cooksey et 
al [9] on the other hand, proposed a hardware only data 
prefetching architecture that exploits the memory 
allocation used by operating systems to improve the 
performance of pointer intensive applications. A mixed 
hardware/software based solution was also proposed by 
Gschwind et al [10], in which they extended (i) the 
memory subsystem by intergrading a prefetch buffer 
mechanism, and (ii) the MIPS R3000 instruction set to 
include instructions to initiate the prefetching in an given 
application. A thorough cost/performance analysis of data 
prefetching was presented by Metcalf [11], who classified 
the different kinds of prefetching modeled and compared 
them. Finally, Grun et al [12] addressed the dominant 
bottleneck of memory access speed, by proposing recently 
the APEX framework, an approach that extracts, analyzes 
and clusters the most active access patterns in the 
applications, and aggressively customizes the memory 
architecture to match the needs of the application, using 
memory models. Again software prefetching alone, cannot 
yield significant performance improvement, due to its 
unavailability to handle data dependencies. As the 
experimental results show in Section 6, an efficient way of 
confronting the memory latency, is an approach of 

software prefetching, which is pipelined and performed 
using DMA 

In this work the problem of hiding the memory latency 
is addressed by employing a prefetch mechanism 
combined with the DMA mode that most current 
embedded systems have. To the best of our knowledge 
until know, nobody has systematically considered the 
beneficial opportunities of prefetching combined with 
DMA. Designers are using this today manually in an ad 
hoc way in the critical parts of their code, but this is very 
tedious and error-prone. We attempt to bridge this gap, 
and illustrate that performance (and power) can be 
improved by the combination of prefetching and DMA. 
Five motion estimation (ME) kernels, belonging to the 
multimedia domain, and one image processing application, 
are used as test vehicles. Multimedia and imaging 
applications have a uniform and known a priori memory 
access pattern. In this paper we remedy the identified 
problem with only a small penalty in terms of design time 
in making the prefetch copies and initiating explicitly the 
DMA transfer. As the experimental measurements show, 
prefetching combined with DMA gives a boost in 
performance (e.g. ~45% performance improvement on the 
Quadtree Structured Difference Pulse Code Modulation 
(QSDPCM) [13]) because all the off-chip memory 
accesses are successfully hidden from the CPU. Also the 
related energy waste is reduced. 

The rest of the paper is structured as follows: Section 
2 introduces the target memory architecture we have 
considered while Section 3 briefly describes the DMA 
access mode. Then, Section 4 presents the prefetching 
technique, followed by Section 5 which analyzes how 
DMA is combined with prefetching. The subsequent 
Section discusses the demonstrator applications and 
experimental results, concluding with Section 7. 

 
2. TARGET MEMORY ARCHITECTURE 

 
The memory architecture that is used in this research 

work is depicted in Figure 1, which is a simplified block 
diagram of the TMS230C6000 CPU architecture [14]. 
This architecture consists of a ‘C6000 CPU core with two 
independent 32-bit data paths for accessing on-chip or off-
chip memory, two blocks of on-chip memory, a 
program/data bus, a peripheral off chip DMA  (Direct 
Memory Access) controller and an external memory. The 
amount and location of internal memory depends on the 
particular device selected. In our case (6201 CPU core), 
exist two 32Kbytes on-chip memory blocks. On the data 
bus, a data memory controller is introduced, which 
services requests to internal memory by either the CPU or 
the DMA. Off-chip and on-chip memory are used in a 
continuous memory map, which means that some memory 
addresses are located in the on-chip space, some are 
reserved, and some are located off-chip. 



 
3. DMA OVERVIEW  

 
In most contemporary embedded systems, memory 

transfers from (to) off chip memory can be performed in 
many ways. The easiest and most common (but very 
inefficient) way is when the CPU controls and operates the 
transfer. When the transfer is CPU controlled the processor 
stalls because it does not perform any computation at all, 
but waits for the memory transfers, which require multiple 
cycles, to be completed. An alternative way to perform the 
transfer is the Direct Memory Access (DMA) mode. If the 
transfer occurs in this way, the CPU is not responsible for 
operating the memory transfer, but that task is deferred to 
another controller, which is called a DMA controller. 
Utilizing DMA transfers means that the CPU can be used 
in performing other tasks. In order to use this mode, the 
processor has to specifically instruct the DMA to start 
copying from (or to) off chip memory, to (or from) on chip 
memory. This is accomplished by a group of assembly 
commands that are specific to every embedded 
architecture. During a DMA transfer, the CPU can request 
data from the on-chip memory which have not been 
fetched yet. In order to avoid this problem, a register can 
be set when the DMA transfer has finished, which will be 
checked by the CPU before it access the on-chip data. If 
the DMA transfer has not finished, the CPU will have to 
wait (denoted as DMA_WAIT) until the flag is set, 
otherwise the on-chip data that the processor requires, may 
be invalid. It is evident that the time spent in the 
DMA_WAIT has to be limited. Usually DMA_WAIT 
statements are placed as late as possible, but not more 
lately than the place that the specific on chip data is 
required by the processor. Ideally the transfer would have 
been completed by the time the processor reaches the 
DMA_WAIT and thus no cycles will be spent stalling. 
However putting the DMA transfer later, requires more on-
chip memory space. This side effect arises from the 
increased life time of on-chip memory data, making 
inplace mapping techniques for memory compaction less 
effective [15]. In realistic cases a complete removal of the 
stalls is not always possible, which means that some cycles 
are spent in DMA_WAIT statements. Alternative, another 
thread could be initiated. Of course, interleaving of 
processing threads could result in much overhead. 

Usually in current embedded systems, more than one 
DMA channel is available to the developer. The DMA 
channel with the lowest number (i.e. DMA0), is the 
channel with the highest priority and vice versa. DMA 
transfers cannot be performed in parallel. For this reason, 
if multiple DMA transfers are initiated, the DMA transfer 
of the highest priority will be completed first, and then the 
DMA of the next priority will continue. Finally the DMA 

transfer should be as large as possible, because starting a 
DMA imposes an overhead to the system.  

 
Figure 1. The Memory Architecture of the TI C6201 
 
The combination of the previous facts, enables the 

designer to initiate a very large DMA with low priority, 
which will have to be completed in a very large time 
window. When small off-chip accesses are required, these 
can happen with the highest priority, suspending 
temporarily the previous ongoing DMA. After the DMA 
with the highest priority is concluded, the first DMA will 
resume (without the extra overhead of re-initiating the 
DMA transfer). 

 
4. PREFETCHING 

 
The memory subsystem is a key bottleneck in 

embedded applications. To reduce memory stall time, 
many current processors support, software-controlled 
prefetching.  With this technique, the compiler or 
programmer schedules an explicit prefetch instruction for a 
memory location that will be accessed by the processor at 
a later time, with the goal of bringing the off-chip data 
elements into the on-chip internal memory, before the CPU 
issues a demand memory access [16]. 

A large portion of many applications, and especially 
applications that make use of large multidimensional 
arrays, are heavily dominated by read and write accesses to 
arrays. These arrays are too big to fit in on-chip memories, 
and for this reason they are placed in large off-chip 
memories. These operations cannot be adequately speeded 
up by caches, as they exhibit poor locality and a large 
working sets, incurring many capacity misses. However, 
accesses to this type of data are very predictably. After 
accessing an element, the probability is high that the next 
element will be accessed. Multimedia applications, like 
motion estimation kernels, exhibit a high predictability 
when the current and previous frames are accessed. For 
this reason prefetching is especially useful in this kind of 
applications. This prefetching occurs concurrently with the 



execution of the actual program. Thus, the penalty incurred 
by accessing off chip memory elements is hidden under 
normal program execution. This translates into a high 
effectiveness of the prefetching. But the latency is still a 
problem in many applications that require strict timing 
constraints. 

 
5. PREFETCHING COMBINED WITH DMA 

 
To alleviate the bottleneck of the memory latency we 

have combined the prefetching technique with the DMA 
mode that modern memories provide. Two key points are 
to be decided in this context. What are the prefetching 
candidates, and where to place the DMA wait statements! 

 
5.1 PREFETCHING CANDIDATES 
 
In order to specify the prefetch candidates the 

prototype tool MHLA [17] is used. This tool takes 
advantage of temporal locality and limited lifetime of the 
memory architecture constraints while taking into account 
the copy overhead, and explores all the possible different 
layer assignments. One of the outputs of this tool is a set of 
copy candidates (CC, i.e. prefetch copies) for a specific 
on-chip memory size. The tool has performed a design 
space exploration on the six applications, and the prefetch 
copies are available. Any selected prefetch copies can be 
implemented in the code in such a way that the CPU 
controls the transfer (using for-loop or the ‘memcopy’  
function).    

Generally speaking, a relation exists between the size 
of a CC and the number of transfers from the higher layer, 
typically called misses (see Fig. 2). This figure shows a 
simple loop nest with one reference to an array A with size 
250. The array has 10000 accesses. Several CCs for array 
A are possible. For example we could add a copy A'' of 
size 10 which is made in front of the k-loop by adding the 
statement “ for (z=0;z<10;z++) A” [z]=A[j*10+z];''. This 
statement is executed 100 times, resulting in 1000 misses 
to the A array. This CC point is shown in Fig 2b. Note that 
the good spatial locality in this example does not influence 
the amount of misses to the next level. In theory any CC 
size ranging from one element to the full array size is a 
potential candidate. However, in practice only a limited set 
of CCs leads to efficient solutions. Obviously, a larger CC 
can retain the data longer and can therefore avoid more 
misses. All possible CCs for this very simple case are 
shown in Fig. 2 b. 

 
5.2 USING DMA TRANSFERS 

 
The second key point is to replace the memcopy 

commands with the DMA commands. A DMA transfer 
consists of a DMA_START and a DMA_WAIT command. 
The DMA_START command instructs the DMA 

controller to start the DMA transfer for a given block size, 
from a specific off-chip (or on-chip) memory address to a 
specific on-chip (or off-chip) memory address. The 
DMA_WAIT command is a crucial point in the DMA 
implementation. In the DMA_WAIT command, the 
processor stalls, waiting for the DMA transfer to be 
completed. When the DMA transfer is completed, then the 
processor can resume the execution of the application. The 
DMA_WAIT statement usually is placed after a 
computational intensive nested loop. Thus while the CPU 
is performing the computations, the DMA performs the 
memory transfer. In case a dependency between elements 
exists that are involved in the DMA transfer, loop 
transformations to break the dependencies are employed, 
like loop pipelining or loop unrolling [15].  

 

 
Figure 2. Copy Candidates Example 

 
The core of the proposed approach is to hide the 

prefetch techniques from the CPU using DMA. This means 
that the DMA transfer must take place and happen in 
parallel with a CPU computational task. Thus, when CPU 
finishes the computation and continues the execution of the 
program, the off-chip data that will be required, will have 
been transferred to on-chip and will be available. This 
results in hiding the off-chip memory access latency. 
Figure 3 and 4 illustrate two effective transformations, 
using DMA priorities and DMA pipelining, respectively. 

 
5.2.1 DMA PRIORITIES 
 
Figure 3 illustrates the approach when multiple DMA 

priorities are used. In Figure 3 (i) the block_copy 
commands transfer arrays from the off-chip to the on-chip 
space for prefetching, which is done with the CPU. The 
next step is to transform these block_copy commands to 
DMA transfer commands. For this reason in Figure 3(ii) 
the DMA0_START and DMA0_WAIT commands are 
added, denoting that the DMA priority 0 has to be 
initiated. The second DMA transfer has no dependencies 
from the previous loop. For this reason, this DMA transfer 
(from off-chipA to on-chipB) can be initiated in advance, 
before the computation of the previous loop. However, in 
the previous loop another DMA transfer exists which 
prohibits us to use the same priority. For this reason the 
second DMA transfer is initiated using a lower priority 
(denoted as DMA1_START). Figure 3 (iii) shows the final 



version of the algorithm, in which the transfer off-chipA to 
on-chipB is initiated in advance with priority 1. Thus, 
when there is the need to transfer from off-chipC to on-
chipD, the DMA1 is suspended, because a DMA transfer 
with a higher priority is initiated. When DMA0 is finished, 
the DMA1 can resume its operation. In this way the DMA 
transfer from off-chipA to on-chipB has been masked from 
the CPU. The efficiency of this masking is reflected on the 
CPU stalled cycles on the DMA1_wait statement. If there 
are few cycles (or none) spent waiting in this wait 
statement, then the masking is successful. With other 
words, if the DMA1 transfer requires a number of cycles 
similar to the number of cycles that are required by the 
CPU to perform the computation of the nested loop, then 
the masking is efficient. Selecting the loop that will mask 
the DMA transfer is a very crucial point, and for this 
reason further investigation to automate this is needed. 
Finally, the DMA0 wait statement cannot be masked due 
to existing dependencies. 

 
5.2.2 DMA PIPELINE 
 
Figure 4 illustrates another approach that is followed 

in hiding the DMAs using pipelining. In Figure 4 (i) a 
DMA transfer goes from an off-chip memory (off-chipA) 
to an on-chip memory (on-chipB of  ‘size’  bytes). In the 
subsequent loop, a dependency prohibits the masking of 
this DMA transfer by moving the DMA_WAIT statement 
after the loop. In order to break this dependency, loop 
pipelining is employed, and on-chipB is doubled in size 
(Figure 4 (ii)). In the same figure also it is illustrated that 
the first iteration of the DMA transfer is unrolled in order 
to create the DMA pipeline. This results in the situation 
that when the CPU computes the motion vectors of the 
current iteration, the DMA transfers elements of the next 
iteration. The dependency is now broken, and in Figure 4 
(iii), the DMA_WAIT statement has been moved to the 
end of this loop nest. Again this DMA0_wait statement has 
to be evaluated and measured in terms of CPU cycles spent 
stalling there. Finally, the first DMA0_wait statement, 
which is the pre-pipeline context, cannot be masked due to 
dependencies. 

In four of the six applications that we have analyzed, 
namely Full Search (FS), Hierarchical Search (HS), 
Parallel Hierarchical One Dimensional Search (PHOD), 
and 3 Step Logarithmic Search (3SLOG) [18] only one 
prefetch candidate is present and one computational loop, 
and thus the DMA_WAIT statement is placed after the 
nested loop. In the QSDPCM and CAVITY applications 
multiple prefetch candidates and multiple loops exist. For 
this reason, more than one DMA channel with different 
priorities is used. Again the goal is to mask the DMA 
transfer, for this reason the DMA_WAIT statement is 
placed after a subsequent nested loop. A point that has to 

be stressed is that the memory hierarchy consists of one 
on-chip memory and one off-chip memory, both addressed 
by a common memory map. For this reason, the arrays are 
specifically placed in memory addresses establishing this 
way that the prefetch copies are on-chip and the 
current/previous frames are off-chip. 

 
6. DEMONSTRATORS AND EXPERIMENTAL 

RESULTS 
 

Our demonstrator applications are selected to be 
several well known real-life motion estimation and 
imaging algorithms: (i) Quadtree Structured Difference 
Pulse Code Modulation (QSDPCM), (ii) Full Search (FS), 
(iii) Hierarchical Search, (iv) Parallel Hierarchical One 
Dimensional Search, (v) 3-Step Logarithmic Search 
(3SLOG), (vi) Cavity Detection. To evaluate the 
performance benefit derived from the prefetch mechanism 
combined with DMA, we measure the execution time of 
the real life multimedia kernels executed on the embedded 
development suite, TI Code Composer Simulator [19]. All 
the measurements are performed using typical parameters 
of these applications. The experiments are carried out with 
the luminance component of QCIF frame (144x176) 
format, while blocks of 16x16 pixels are selected. All 
these algorithms calculate the motion vectors of two 
successive frames, but they differ in granularity, the 
precision and the complexity. Specifically, the QSDPCM 
algorithm is an interframe compression technique for video 
images. It involves a motion estimation step, and a 
quadtree based encoding of the motion compensated 
frame-to-frame difference signal. Finally, The Cavity 
detection algorithm is an image processing application 
used mainly in the medical field for detecting tumor 
cavities in computer tomography pictures and is based on 
edge detection. 

Most video coding concepts contain a motion 
compensated temporal DPCM (differential pulse coding 
modulation) module in which the motion compensated 
prediction (MCP) error image is transform coded, 
employing the widely introduced discrete cosine transform 
(DCT). In the QSDPCM method, the MCP error image is 
adaptively decomposed in blocks of variable size, where in 
each block the MCP error image is represented by the 
local sample means. The variable block size structure is 
described by a quadtree. The local sample means are 
independently Huffman coded. QSDPCM has the highest 
computational complexity of all the other three algorithms, 
but it yields the best signal-to-noise (SNR) ratio. FS 
algorithm has a high computational complexity also and is 
a very expensive (in terms of operations per frame), but 
guarantees finding the optimal motion vectors due to the 
thoroughly frame motion scan.  



 
Figure 3: Hiding DMAs using priorities 

 
Figure 4: Hiding DMAs using pipelining 

HS is a fast ME scheme that use a combination of 
search strategies that use both fewer search locations and 
fewer pixels in computing the motion vectors, while 
PHODS and 3SLOG belong to the class of very fast 
algorithms that reduce the motion–estimation complexity 
by reducing the number of search locations that are used in 
determining the motion vectors. Cavity on the other hand, 
consists of 10 loop nests and its complexity is a little 
higher than FS. 

The applications are measured in the Code Composer 
Simulator, using copy candidates where applicable, but 
without using DMA for the memory transfers (denoted as 
original). Then they are measured using DMA overlaid 
with CPU computations (denoted as prefetch+dma). Figure 
5, presents the performance measurements of the six real-
life applications. The y-axis is in logarithmic scale, in 
order to have all the applications depicted on the same 
plot. The y-axis, presents the cycles spent performing the 
computations, excluding the I/O functions. The lower the 
value, the better performance the application has, because 
it is executed in fewer cycles. Figure 6 illustrates in a 
different way the performance gain of every application. 

The values depicted in this graph show the percentage of 
the performance improvement, compared with the original 
(1- performance_optimized /performance_original). 
QSDPCM application has the highest performance 
improvement (47%) because it is an application that has a 
large number of computational intensive loops. On the 
other hand, the motion estimation kernels exhibit smaller 
performance gains since they have less computational 
complexity than QSDPCM. Specifically the performance 
gain of FS, HS, 3SLOG and PHODS is 10%, 12%, 8% and 
23% respectively, while CAVITY has a performance gain 
of 33%. 

A measure of the efficiency of the DMA mode is the 
cycles of the CPU that are spent in stalling during the 
DMA_WAIT statement. An efficient DMA 
implementation depends on the minimization of the cycles 
spent in the DMA_WAIT. Figure 7 presents the cycles 
spend in the ME applications. It can be easily seen that the 
cycles spent are indeed minimal; for example QSDPCM 
application has only 14954 cycles in CPU stalling during 
the DMA_WAIT, which is a very small percentage of the 
total cycles in the optimized application (< 1%).  Figure 8 



illustrates different Prefetch+DMA possibilities for the 
QSDPCM application. In order to achieve optimum 
efficiency, the prefetch candidates have to be carefully 
selected together with their on-chip memory size and the 
proper scheduling of the DMA transfer. Different choices, 
lead to different performance. Thus, the designer can study 
the global trade-off curve, and decide the implementation 
that best fits his constraints. 
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Figure 5. Performance evaluation of original and 

optimized ME applications (y-axis: logarithmic scale) 

. 

Performance Improvement

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

QSDPCM FS HS 3SLOG PHODS CAVITY

Application

%
 g

ai
n

DMA+Prefetch

 
Figure 6. Performance improvement of the optimized ME 

applications 

 
The performance improvements also have a direct 

positive impact on the energy consumption for a given task 
(The instantaneous power is probably the same). TI has 
published an application report [20] that analyzes the 
power consumption on the TI devices and peripherals. In 
this report it is shown that the C6201 core consumes ~49% 
of total power consumption of the system for high or low 
activity models, while peripherals (like the DMA 
controller) consumes 1% of the total power consumption 
and hence have nearly no overhead when activated. This 
means that decreasing the execution cycles on the core of a 
given application utilizing DMA mode has a strong direct 
impact on the overall power consumption. It is known that 
fewer cycles spent on an application execution, for the 
same energy cost/cycle, translates to fewer mW dissipated 
by the system. We are not able to provide accurate 
numbers of the power reduction at this point due to the 
lack of information on the TI core breakdown), but it can 
be safely assumed that a performance increase of 45% has 
an energy decrease of nearly the same value to implement 
the same task. 
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Figure 7. CPU stall cycles in DMA_WAIT statement 

In the case that hardware prefetchers as [11] or [12] are 
used in the specific applications, it is expected that the 
efficiency will be reduced, because the hardware schemes 
perform only prefetching and not any algorithmic 
modifications. These applications have a lot of 
dependencies which they can only be broken using specific 
algorithmic transformations (i.e. loop pipeline), diluting 
the effectiveness of pure hardware prefetching. Without 
performing e.g. software pipelining, the elaborated 
hardware like DMA controllers or data movers or 
hardware prefetchers would have abysmal efficiency. The 
key contribution of this paper is that software prefetching 
which is pipelined and performed using DMA exhibits a 
significant performance and power improvement.  

 
7. CONCLUSIONS 

 
The memory hierarchy plays an important role and should 
be used efficiently in embedded systems. One of the key 
obstacles in achieving high memory performance 
utilization is memory access latency. As a result, various 
techniques have been devised to hide memory access 
latency. This paper illustrates that the performance (and 
power consumption) of multimedia and image processing 
applications, which are characterized by a uniform access 
pattern, can be significantly improved, by using the DMA 
mode that most contemporary systems have, combined 
with the prefetch mechanism. Six real life applications are 
used as test vehicles for evaluation. The measurements 
show that it is possible to mask the prefetch latency, using 
the DMA mode, with a cost overhead of increased usage of 
on-chip memory space. This results in applications that 
perform faster and consume less energy to execute the 
same task. These results motivate further research in 
developing an interactive design support tool that will 
analyze the code and present all the possible tradeoffs 
between performance and on chip memory size. 
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