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Abstract: In this paper, we present a new method of image coding using two popular imaging tools, Zernike moments
and Wavelets. The main idea is that we can produce appropriate image descriptors by involving an appropriate number
of moments, compressed in a form suitable to represent an image with low reconstruction error for pattern recognition
applications. At this point the concept of wavelet compression is involved, which has already been discussed in many
technical papers. We use an existent wavelet based compression algorithm, to compress not the 2-D image, but the
resulted moment based 1-D signal. So, using this formulation we can achieve a compressed representation of the image,
suitable for pattern recognition purposes and image retrieval tasks. It is very important to notice here the ability of
Zernike moments to provide a very high level of image reconstruction, using the inverse wavelet transform,

establishing a useful method.

1. INTRODUCTION

Have been passed four decades, since Hu [1]
introduced the concept of moment invariants and the
use of image moments for 2-D pattern recognition.
Since then, many moment-based techniques have found
wide applications [2,3,4].

This paper presents a processing sequence, consisting
of three general stages. At the first stage, translation,
scale and rotation invariant Zernike moments are
extracted from a 2-D image. At the second stage the 1-
D wavelet decomposition is applied to the resulted
signal that has been constructed from the moments. At
the third stage a compression algorithm is applied to the
derived wavelet coefficients, in order to keep the useful
content of the moments based signal.

Wavelets have played important role in image
processing, as a powerful tool for filtering, denoising,
compression [5] etc. The role of wavelets in image
coding is important, in the sense that they can give
features containing large information from the image
[6,7]. Thus, a new class of descriptors has been
obtained, the wavelet descriptors [8,9,10], which are
complementary to Fourier descriptors, since they have
additional advantages.

The power of the features is completed by the ability
to reconstruct the original image from their values. This
procedure is not always simple, because the inverse
procedure must exist for every process that is applied to
the image. This demand is satisfied in our approach and
its efficiency is derived using a measurement that
describes the reconstruction error.

2. ZERNIKE MOMENTS
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The desired properties that distinguished features
must have in any pattern recognition system are
translation, scale and rotation invariance. These
demands have guided for the investigation of methods
in order to derive invariant features.

In the proposed method we try to construct a one-
dimensional “moment signal”, using a modified version
of Zernike moments, to achieve all the necessary
invariances.

Let consider a MxM 2-D binary image with intensity
function f (x, y), resulted from a gray level image with

a simple binarization method using thresholding. To

keep the dynamic range of m, consistent for different

size images, the MxM image plane is first mapped onto
a square defined by x € [-1+1], y € [-1+1] [11]. This
kind of normalization took place for one more reason.
That is, the Zernike moments to be constructed in this
section, are defined over the interior of the unit circle,

X+ y2 =1 The regular geometrical moments of this

image defined as
+1 +1

mpg = 2 2xPyf(xy)dxdy (0
x=-1 y=-1
where my is the (p+q)th order moment of the image.
This type of moments does not have any of the
desired invariances, so they are not suitable for pattern
recognition tasks. To achieve translation invariance we
describe each image point according to its centroid.
Working by this way we derive the well known central
moments
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where, x =myy/myy ,y =mgy/myy are the centroid

coordinates of the original image.

To ensure scale invariance we can define the

normalized central moments
pq:Myi aYZp;qul 3)
Koo

At this point we have a modified type of geometrical
moments, called normalized central moments that
satisfy two of our three invariance demands. The last
one is rotation invariance, an important property that
any good distinguished feature must have.

There have been presented several methods to obtain
rotational independence, the most popular of them using
orthogonal polynomials as Zernike, Legendre etc. The
necessity of using orthogonal polynomials, except that
we can secure the rotation invariance property, is the
fact that the regular geometrical moments are the
projection of f{x,y) onto the monomial xy?. The basis
set x’y7 is not orthogonal and this results to information
redundancy. This drawback of regular moments can be
fixed by using an orthogonal basis of functions that also
provides a very useful and efficient reconstruction
property.

In our experiments we use the Zernike moments for
obtaining invariant moment features, to construct the
“moment signal” that will be processed in order to
extract useful information from our image.

Zernike introduced a set of complex polynomials,
which form a complete orthogonal set over the interior

of the unit circle x*+ y2 =1. These polynomials
[11,12] have the form
Vo (.7) = Vam (0.8) = Ropm (p Jexp(jm8)  (4)
where #n is non-negative integer, m is a non zero integer
subject to constraints n-|m| even and |m|< n, p is the
length of vector from origin (3?,}) to (x, y) pixel and
the angle between vector p and x axis in counter-
clockwise direction, R, (p) are the Zernike radial
polynomials in (p,6) polar coordinates defined as
n—\m| /2
an(p): ‘Z:‘ (71)3‘
s=0 (n_s) | (5)
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Note that Rn,—m (p) = Ry (p)

These polynomials are orthogonal and satisfy the
orthogonality principle

”ﬁ +y°<1 [Vnm (x’ y)]*qu (x’ y)dXdy = ﬁsnpqu (6)

where d, =1 for a=p and J,s =0 otherwise, is the
Kronecker symbol.

The Zernike moment of order n with repetition m for
a digital image with intensity function f (x, y) that

vanishes outside the unit disk is

n+l1

A =

EX ) Van (p0),  x*+)? <1(7)
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The rotation invariance property of these Zernike
moments has been already analyzed [12]. These
investigations led to the conclusion that the magnitudes
of Zernike moments are invariant to any rotation of the
image. Thus, we can use for our experiments the
magnitudes of the resulted Zernike moments beyond a
high order.

Because the Zernike moments are only rotationally
invariant, we must give to these moments the additional
properties of translation and scale invariance, in some
way. As discussed in the previous section, we can
ensure these invariances by converting the absolute
pixel coordinates (2), (3).

Guided from these equations we achieve translation
invariance by transforming the image into one whose
origin is the image centroid. In other words, the origin
is moved to the centroid before moment calculation.
The new image has intensity function f (x+)?, y+)7)
[12].

We obtain scale invariance by enlarging or reducing
each object such that its zeroth-order moment m,, is set
to a predetermined value, f [12]. Thus the original
image function is transformed into a new function
Sf(x/a,y/a) with a=(B/mg)"".

Finally, an image function f (x, y) can be normalized

with respect to scale and translation by transforming it
into

glxy)= f(ﬂi,i +1j )
a a

In our experiments we use as invariant moment
features the following Zernike moments magnitudes

|Anm|: n+l

> ¥ gl6y) Vam (p.9) (8)
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T

These magnitudes are translation, scale and rotation
invariant and therefore, they are useful to any pattern
recognition application.

From these moments the initial image can be
obtained, using the reconstruction formula

760)= 8 S dubun(p,0) ©)

n=0m
An alternative formula for reconstruction can be
found in [12]. Note that as n,, approaches infinity

7 (x, ») will approach f{x,y).

3. WAVELET COMPRESSION

Wavelet theory constitutes a very useful tool in image
processing [13]. In some sense, we can say that it comes
to complement the so important Fourier theory.

Applying the 1-D discrete wavelet transform (1-D
DWT) to the “moment signal”, obtained in the previous
processing step, using the next definition
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where  is the mother wavelet, the decomposition of
our signal can be achieved as follows

o0
SO)=2u 060+ X Swiwle)  (AD
k j=j0 k
with
ujp =W (FUk)) s wis =1, (£(iK) - (12)
the scaling and wavelet coefficients respectively.

In the above equations ¢ is the relative to the mother
function scaling function, jk are indices of the
translation and dilation parameters and j, represents the
coarsest scale.

This yields a number of wavelet coefficients from
which we can reconstruct the original signal. The
importance of the wavelet transform is that captures
local characteristics of the signal and in this way we
have a localized view of the signal’s behavior.

Bearing in mind that our aim is to keep the least
coefficients possible without losing useful information,
we apply to this set of coefficients a compression
algorithm that wuses the following simple soft
thresholding (shrinkage) procedure

Y {Sign(x)((lx| —thr ))+ , | x| > thr

0 , x| < thr (3

where x is the input signal, Y is the compressed version
of x and thr is the compression threshold that can be set
manually or by using a specified algorithm.

Doing this, we obtain a truncated set of coefficients
from which we can reconstruct the initial image.

4. PROPOSED METHOD

This section describes the new set of invariant
features that resulted after several processing stages.
The flow diagram is depicted in figure (1).
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Fig. 1. The flow diagram of the proposed method

The desired steps that perform the procedure shown
in the above figure, can be summarized as follows:

Step 1: Taking a 2-D binary image, we transform the
image coordinates in such way, that the image is
mapped to a unit disk [-1,1].

Step 2: Transform the image density function f (x, y)
to a translation and scale invariant version as shown
in equation (7). At this step we get the g(x, y)

intensity function.

Step 3: Computation of Zernike moment magnitudes
with the help of equation (8). Using these
measurements, we construct a one-dimensional
signal, which consists of those magnitudes. The way
to place the magnitudes is the number of generation
of each magnitude, which also constitutes the order
that each moment participates in the reconstruction
procedure. So, first we position the |Ag| moment,
second the |A;| and so on.

Step 4: Decomposition of the “moment signal” using
equation (11) and the wavelet transform (10), results
to a set of wavelet coefficients (12) able to
reconstruct the original “moment signal”.

Step 5: At the last step we perform a compression
procedure onto the set of wavelet coefficients,
applying thresholding (13).

The above processing yields a compressed set of
Zernike moments. To reconstruct the original image
from these compressed moments, we perform exactly
the inverse steps.

The inverse process is described in Fig. (1), in which
we can see that the inverse path is legal since all the
intermediate steps have their inverse procedures.

After the completion of this “loopback” operation we
take a measurement of the effectiveness of the proposed
method that is the reconstruction error. We define as
reconstruction error the Hamming distance between the
original and the reconstructed images

error =YY }(x,y)— f(x,y* (14)
Xy

with _]A"(x,y),f(x,y) =0or 1.

5. SIMULATION RESULTS

To study the capabilities of the proposed method, a
number of experiments have been conducted. The
simulation results have been obtained using the
MATLAB software package.

The experiments were implemented according to the
following settings: =800, binarization threshold equal
to 128, images of size 256x256, one level wavelet
decomposition using haar wavelet, n=0,1,.30, and m
according to the same constraints with equation (4).

With these settings a set of 256 translation, scale and
rotation invariant Zernike moments were derived, that
were used to construct the “moment signal”. In this
signal the wavelet based compression algorithm was
applied that resulted in a signal that can be
reconstructed from 25% fewer wavelet coefficients.



These moments based wavelet coefficients are the
features we need.

In Fig.2, a sample of the original (solid line) and the
compressed (dashed line) “moment signal” consisting of
the last 50 values are depicted.

Instead of the description of the test image with the
256 Zernike moments, we can represent this image
using the 192 resulted wavelet coefficients, from which
we can construct the compressed “moment signal” and
thus the original image.

Therefore we can represent the initial image with
25% fewer invariant features, and of course we can
reconstruct it with minimum reconstruction error.

In Fig. 3 the original and the reconstructed image are
illustrated, using these wavelet based Zernike moments.
The reconstruction error with this method was 547
pixels, meaning that the original image has been
reconstructed loosing 0.87% of its pixels. This error is
about 0.85% using the usual Zernike moments. Errors
are almost the same, but using the proposed method,
the feature vector corresponding to the image has been
reduced by about 25%.
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Fig. 2. Original vs. Compressed “moment signal”

(a) (b)

Fig. 3. (a) original image, (b) reconstructed image from the

compressed Zernike moments

6. CONCLUSIONS

A novel method for image representation was
presented in this paper. We used a combination of the
moment’s theory and the wavelet transform, to derive
invariant features, proper for pattern recognition
applications.

In this paper we investigate the ability of these
features to carry enough information of the original
image, so we can reconstruct it with optimal
reconstruction error. The simulation results are very

promising, for further investigation of this approach.
Future work will emphasize in finding an optimal
method of constructing the “signal moment” and in
testing these features in real world pattern recognition
problems.
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