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Abstract: In this paper, we present a new method of image coding using two popular imaging tools, Zernike moments 
and Wavelets. The main idea is that we can produce appropriate image descriptors by involving an appropriate number 
of moments, compressed in a form suitable to represent an image with low reconstruction error for pattern recognition 
applications. At this point the concept of wavelet compression is involved, which has already been discussed in many 
technical papers. We use an existent wavelet based compression algorithm, to compress not the 2-D image, but the 
resulted moment based 1-D signal. So, using this formulation we can achieve a compressed representation of the image, 
suitable for pattern recognition purposes and image retrieval tasks. It is very important to notice here the ability of 
Zernike moments to provide a very high level of image reconstruction, using the inverse wavelet transform, 
establishing a useful method.  
 
 
 

1. INTRODUCTION 

Have been passed four decades, since Hu [1] 
introduced the concept of moment invariants and the 
use of image moments for 2-D pattern recognition. 
Since then, many moment-based techniques have found 
wide applications [2,3,4].   

This paper presents a processing sequence, consisting 
of three general stages. At the first stage, translation, 
scale and rotation invariant Zernike moments are 
extracted from a 2-D image. At the second stage the 1-
D wavelet decomposition is applied to the resulted 
signal that has been constructed from the moments. At 
the third stage a compression algorithm is applied to the 
derived wavelet coefficients, in order to keep the useful 
content of the moments based signal.  

Wavelets have played important role in image 
processing, as a powerful tool for filtering, denoising, 
compression [5] etc.  The role of wavelets in image 
coding is important, in the sense that they can give 
features containing large information from the image 
[6,7]. Thus, a new class of descriptors has been 
obtained, the wavelet descriptors [8,9,10], which are 
complementary to Fourier descriptors, since they have 
additional advantages. 

The power of the features is completed by the ability 
to reconstruct the original image from their values. This 
procedure is not always simple, because the inverse 
procedure must exist for every process that is applied to 
the image. This demand is satisfied in our approach and 
its efficiency is derived using a measurement that 
describes the reconstruction error. 
 
 

2. ZERNIKE MOMENTS  

The desired properties that distinguished features 
must have in any pattern recognition system are 
translation, scale and rotation invariance. These 
demands have guided for the investigation of methods 
in order to derive invariant features. 

In the proposed method we try to construct a one-
dimensional “moment signal”, using a modified version 
of Zernike moments, to achieve all the necessary 
invariances.  

Let consider a MxM 2-D binary image with intensity 
function , resulted from a gray level image with 
a simple binarization method using thresholding. To 
keep the dynamic range of  consistent for different 

size images, the MxM image plane is first mapped onto 
a square defined by  [11]. This 
kind of normalization took place for one more reason. 
That is, the Zernike moments to be constructed in this 
section, are defined over the interior of the unit circle, 

 The regular geometrical moments of this 
image defined as 
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where mpq is the (p+q)th order moment of the image. 
This type of moments does not have any of the 

desired invariances, so they are not suitable for pattern 
recognition tasks. To achieve translation invariance we 
describe each image point according to its centroid. 
Working by this way we derive the well known central 
moments 
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where, 00010010 /,/ mmymmx ==  are the centroid 
coordinates of the original image. 

To ensure scale invariance we can define the 
normalized central moments 
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At this point we have a modified type of geometrical 
moments, called normalized central moments that 
satisfy two of our three invariance demands. The last 
one is rotation invariance, an important property that 
any good distinguished feature must have. 

There have been presented several methods to obtain 
rotational independence, the most popular of them using 
orthogonal polynomials as Zernike, Legendre etc. The 
necessity of using orthogonal polynomials, except that 
we can secure the rotation invariance property, is the 
fact that the regular geometrical moments are the 
projection of f(x,y) onto the monomial xpyq. The basis 
set xpyq is not orthogonal and this results to information 
redundancy. This drawback of regular moments can be 
fixed by using an orthogonal basis of functions that also 
provides a very useful and efficient reconstruction 
property. 

In our experiments we use the Zernike moments for 
obtaining invariant moment features, to construct the 
“moment signal” that will be processed in order to 
extract useful information from our image. 

Zernike introduced a set of complex polynomials, 
which form a complete orthogonal set over the interior 
of the unit circle . These polynomials 
[11,12] have the form       
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where n is non-negative integer, m is a non zero integer 
subject to constraints n-|m| even and |m|≤ n, ρ is the 
length of vector from origin ( o  pixel and θ 
the angle between vector ρ and x axis in counter-
clockwise direction,  are the Zernike radial 
polynomials in (ρ,θ) polar coordinates defined as 
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Note that  ( ) ( )ρρ nmmn, RR =−

These polynomials are orthogonal and satisfy the 
orthogonality principle 
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where  δαβ =1 for α=β and δαβ =0 otherwise, is the 
Kronecker symbol.  

The Zernike moment of order n with repetition m for 
a digital image with intensity function  that 
vanishes outside the unit disk is  
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The rotation invariance property of these Zernike 
moments has been already analyzed [12]. These 
investigations led to the conclusion that the magnitudes 
of Zernike moments are invariant to any rotation of the 
image. Thus, we can use for our experiments the 
magnitudes of the resulted Zernike moments beyond a 
high order. 

Because the Zernike moments are only rotationally 
invariant, we must give to these moments the additional 
properties of translation and scale invariance, in some 
way. As discussed in the previous section, we can 
ensure these invariances by converting the absolute 
pixel coordinates (2), (3). 

Guided from these equations we achieve translation 
invariance by transforming the image into one whose 
origin is the image centroid. In other words, the origin 
is moved to the centroid before moment calculation. 
The new image has intensity function ( )yyxxf ++ ,  
[12]. 
   We obtain scale invariance by enlarging or reducing 
each object such that its zeroth-order moment m00, is set 
to a predetermined value, β [12]. Thus the original 
image function is transformed into a new function 
f(x/a,y/a) with α=(β/m00)1/2. 

Finally, an image function  can be normalized 
with respect to scale and translation by transforming it 
into  
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In our experiments we use as invariant moment 
features the following Zernike moments magnitudes 
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These magnitudes are translation, scale and rotation 
invariant and therefore, they are useful to any pattern 
recognition application. 

From these moments the initial image can be 
obtained, using the reconstruction formula 
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An alternative formula for reconstruction can be 
found in [12]. Note that as nmax approaches infinity 

 will approach f(x,y). ( yxf ,
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3. WAVELET COMPRESSION 

Wavelet theory constitutes a very useful tool in image 
processing [13]. In some sense, we can say that it comes 
to complement the so important Fourier theory. 

Applying the 1-D discrete wavelet transform (1-D 
DWT) to the “moment signal”, obtained in the previous 
processing step, using the next definition 
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where ψ is the mother wavelet, the decomposition of 
our signal can be achieved as follows 
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the scaling and wavelet coefficients respectively. 
In the above equations φ is the relative to the mother 

function scaling function, j,k  are indices of the 
translation and dilation parameters and j0 represents the 
coarsest scale. 

This yields a number of wavelet coefficients from 
which we can reconstruct the original signal. The 
importance of the wavelet transform is that captures 
local characteristics of the signal and in this way we 
have a localized view of the signal’s behavior.  

Bearing in mind that our aim is to keep the least 
coefficients possible without losing useful information, 
we apply to this set of coefficients a compression 
algorithm that uses the following simple soft 
thresholding (shrinkage) procedure 
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where x is the input signal, Y is the compressed version 
of x and thr is the compression threshold that can be set 
manually or by using a specified algorithm. 

Doing this, we obtain a truncated set of coefficients 
from which we can reconstruct the initial image.  

 
4. PROPOSED METHOD 

 
This section describes the new set of invariant 

features that resulted after several processing stages. 
The flow diagram is depicted in figure (1). 
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Fig. 1. The flow diagram of the proposed method 

 
The desired steps that perform the procedure shown 

in the above figure, can be summarized as follows: 

 
Step 1: Taking a 2-D binary image, we transform the 
image coordinates in such way, that the image is 
mapped to a unit disk [-1,1]. 
Step 2: Transform the image density function 
to a translation and scale invariant version as shown 
in equation (7). At this step we get the 
intensity function. 

( )yxf ,  

( )yxg ,  

Step 3: Computation of Zernike moment magnitudes 
with the help of equation (8). Using these 
measurements, we construct a one-dimensional 
signal, which consists of those magnitudes. The way 
to place the magnitudes is the number of generation 
of each magnitude, which also constitutes the order 
that each moment participates in the reconstruction 
procedure. So, first we position the |A00| moment, 
second the |A11| and so on.  
Step 4: Decomposition of the “moment signal” using 
equation (11) and the wavelet transform (10), results 
to a set of wavelet coefficients (12) able to 
reconstruct the original “moment signal”. 
Step 5: At the last step we perform a compression 
procedure onto the set of wavelet coefficients, 
applying thresholding (13).  

 
 The above processing yields a compressed set of 

Zernike moments. To reconstruct the original image 
from these compressed moments, we perform exactly 
the inverse steps. 

The inverse process is described in Fig. (1), in which 
we can see that the inverse path is legal since all the 
intermediate steps have their inverse procedures. 

After the completion of this “loopback” operation we 
take a measurement of the effectiveness of the proposed 
method that is the reconstruction error. We define as 
reconstruction error the Hamming distance between the 
original and the reconstructed images    
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5. SIMULATION RESULTS 

 
To study the capabilities of the proposed method, a 

number of experiments have been conducted. The 
simulation results have been obtained using the 
MATLAB software package. 

The experiments were implemented according to the 
following settings: β=800, binarization threshold equal 
to 128, images of size 256x256, one level wavelet 
decomposition using haar wavelet, n=0,1,.30, and m 
according to the same constraints with equation (4). 

With these settings a set of 256 translation, scale and 
rotation invariant Zernike moments were derived, that 
were used to construct the “moment signal”. In this 
signal the wavelet based compression algorithm was 
applied that resulted in a signal that can be 
reconstructed from 25% fewer wavelet coefficients. 



These moments based wavelet coefficients are the 
features we need.  

In Fig.2, a sample of the original (solid line) and the 
compressed (dashed line) “moment signal” consisting of 
the last 50 values are depicted. 

Instead of the description of the test image with the 
256 Zernike moments, we can represent this image 
using the 192 resulted wavelet coefficients, from which 
we can construct the compressed “moment signal” and 
thus the original image. 

Therefore we can represent the initial image with 
25% fewer invariant features, and of course we can 
reconstruct it with minimum reconstruction error. 

In Fig. 3 the original and the reconstructed image are 
illustrated, using these wavelet based Zernike moments. 
The reconstruction error with this method was 547 
pixels, meaning that the original image has been 
reconstructed loosing 0.87% of its pixels. This error is 
about 0.85% using the usual Zernike moments. Errors 
are almost the same, but using the proposed method,  
the feature vector corresponding to the image has been 
reduced by about 25%. 

Fig. 2. Original vs. Compressed “moment signal” 
 

 

(a) 

 

(b) 

Fig. 3. (a) original image, (b) reconstructed image from the 

compressed Zernike moments 

 
6. CONCLUSIONS 

A novel method for image representation was 
presented in this paper. We used a combination of the 
moment’s theory and the wavelet transform, to derive 
invariant features, proper for pattern recognition 
applications. 

In this paper we investigate the ability of these 
features to carry enough information of the original 
image, so we can reconstruct it with optimal 
reconstruction error. The simulation results are very 

promising, for further investigation of this approach. 
Future work will emphasize in finding an optimal 
method of constructing the “signal moment” and in 
testing these features in real world pattern recognition 
problems.   
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